Difference between revisions of "2013 AMC 10A Problems/Problem 3"
Countingkg (talk | contribs) |
Countingkg (talk | contribs) |
||
Line 3: | Line 3: | ||
Square <math> ABCD </math> has side length <math>10</math>. Point <math>E</math> is on <math>\overline{BC}</math>, and the area of <math> \triangle ABE </math> | Square <math> ABCD </math> has side length <math>10</math>. Point <math>E</math> is on <math>\overline{BC}</math>, and the area of <math> \triangle ABE </math> | ||
is <math>40</math>. What is <math> BE </math>? | is <math>40</math>. What is <math> BE </math>? | ||
+ | <asy> | ||
+ | pair A,B,C,D,E; | ||
+ | A=(0,0); | ||
+ | B=(0,50); | ||
+ | C=(50,50); | ||
+ | D=(50,0); | ||
+ | E = (30,50); | ||
+ | draw(A--B); | ||
+ | draw(B--E); | ||
+ | draw(E--C); | ||
+ | draw(C--D); | ||
+ | draw(D--A); | ||
+ | draw(A--E); | ||
+ | dot(A); | ||
+ | dot(B); | ||
+ | dot(C); | ||
+ | dot(D); | ||
+ | dot(E); | ||
+ | label("A",A,SW); | ||
+ | label("B",B,NW); | ||
+ | label("C",C,NE); | ||
+ | label("D",D,SE); | ||
+ | label("E",E,N); | ||
− | + | </asy> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Line 25: | Line 35: | ||
We know that the area of <math>\triangle ABC</math> is equal to <math>\frac{AB(BE)}{2}</math>. Plugging in <math>AB=10</math>, we get <math>80 = 10BE</math>. Dividing, we find that <math>BE=8</math>, <math>\textbf{(E)}</math> | We know that the area of <math>\triangle ABC</math> is equal to <math>\frac{AB(BE)}{2}</math>. Plugging in <math>AB=10</math>, we get <math>80 = 10BE</math>. Dividing, we find that <math>BE=8</math>, <math>\textbf{(E)}</math> | ||
+ | |||
+ | |||
+ | ==See Also== | ||
+ | |||
+ | {{AMC10 box|year=2013|ab=A|num-b=2|num-a=4}} | ||
+ | {{AMC12 box|year=2013|ab=A|before=First Problem|num-a=2}} |
Revision as of 20:45, 7 February 2013
Problem
Square has side length . Point is on , and the area of is . What is ?
Solution
We know that the area of is equal to . Plugging in , we get . Dividing, we find that ,
See Also
2013 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2013 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by First Problem |
Followed by Problem 2 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |