Difference between revisions of "1997 USAMO Problems/Problem 5"

(Solution)
Line 1: Line 1:
 
[[File:USAMO97(5-solution).jpg]]== Problem ==
 
[[File:USAMO97(5-solution).jpg]]== Problem ==
 +
Prove that, for all positive real numbers <math>a, b, c,</math>
 +
 +
<math>(a^3+b^3+abc)^{-1}+(b^3+c^3+abc)^{-1}+(a^3+c^3+abc)^{-1}\le(abc)^{-1}</math>.
 +
 
Prove that, for all positive real numbers <math>a, b, c,</math>
 
Prove that, for all positive real numbers <math>a, b, c,</math>
  

Revision as of 08:20, 16 January 2013

USAMO97(5-solution).jpg== Problem == Prove that, for all positive real numbers $a, b, c,$

$(a^3+b^3+abc)^{-1}+(b^3+c^3+abc)^{-1}+(a^3+c^3+abc)^{-1}\le(abc)^{-1}$.

Prove that, for all positive real numbers $a, b, c,$

$(a^3+b^3+abc)^{-1}+(b^3+c^3+abc)^{-1}+(a^3+c^3+abc)^{-1}\le(abc)^{-1}$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

1997 USAMO (ProblemsResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6
All USAMO Problems and Solutions