Difference between revisions of "2009 AMC 10A Problems/Problem 17"

(Solution 1)
(Solution 1)
Line 45: Line 45:
  
 
Triangle <math>EAB</math> is similar to <math>DAB</math>, as they have the same angles. Segment <math>BA</math> is perpendicular to <math>DA</math>, meaning that angle <math>DAB</math> and <math>BAE</math> are right angles and congruent. Also, angle <math>DBE</math> is a right angle. Because it is a rectangle, angle <math>BDC</math> is congruent to <math>DBA</math> and angle <math>ADC</math> is also a right angle. By the transitive property:
 
Triangle <math>EAB</math> is similar to <math>DAB</math>, as they have the same angles. Segment <math>BA</math> is perpendicular to <math>DA</math>, meaning that angle <math>DAB</math> and <math>BAE</math> are right angles and congruent. Also, angle <math>DBE</math> is a right angle. Because it is a rectangle, angle <math>BDC</math> is congruent to <math>DBA</math> and angle <math>ADC</math> is also a right angle. By the transitive property:
 +
 
<math>mADB + mBDC = mDBA + mABE</math>
 
<math>mADB + mBDC = mDBA + mABE</math>
 +
 
<math>mBDC = mDBA</math>
 
<math>mBDC = mDBA</math>
 +
 
<math>mADB + mBDC = mBDC + mABE</math>
 
<math>mADB + mBDC = mBDC + mABE</math>
 +
 
<math>mADB = mABE</math>
 
<math>mADB = mABE</math>
  
 
Next, because every triangle has a degree measure of 180, angle <math>E</math> and angle <math>DBA</math> are congruent.  
 
Next, because every triangle has a degree measure of 180, angle <math>E</math> and angle <math>DBA</math> are congruent.  
 +
  
 
Hence <math>BE/AB = DB/AD</math>, and therefore <math>BE = AB\cdot DB/AD = 20/3</math>.
 
Hence <math>BE/AB = DB/AD</math>, and therefore <math>BE = AB\cdot DB/AD = 20/3</math>.

Revision as of 16:13, 3 January 2013

Problem

Rectangle $ABCD$ has $AB=4$ and $BC=3$. Segment $EF$ is constructed through $B$ so that $EF$ is perpendicular to $DB$, and $A$ and $C$ lie on $DE$ and $DF$, respectively. What is $EF$?

$\mathrm{(A)}\ 9 \qquad \mathrm{(B)}\ 10 \qquad \mathrm{(C)}\ \frac {125}{12} \qquad \mathrm{(D)}\ \frac {103}{9} \qquad \mathrm{(E)}\ 12$

Solution

Solution 1

The situation is shown in the picture below.

[asy] unitsize(0.6cm); defaultpen(0.8); pair A=(0,0), B=(4,0), C=(4,3), D=(0,3); pair EF=rotate(90)*(D-B); pair E=intersectionpoint( (0,-100)--(0,100), (B-100*EF)--(B+100*EF) ); pair F=intersectionpoint( (-100,3)--(100,3), (B-100*EF)--(B+100*EF) ); draw(A--B--C--D--cycle); draw(B--D, dashed); draw(E--F); draw(A--E, dashed); draw(C--F, dashed); label("$A$",A,W); label("$B$",B,SE); label("$C$",C,N); label("$D$",D,NW); label("$E$",E,SW); label("$F$",F,NE); label("$3$",A--D,W); label("$4$",C--D,N); [/asy]

Obviously, from the Pythagorean theorem we have $BD=5$.

Triangle $EAB$ is similar to $DAB$, as they have the same angles. Segment $BA$ is perpendicular to $DA$, meaning that angle $DAB$ and $BAE$ are right angles and congruent. Also, angle $DBE$ is a right angle. Because it is a rectangle, angle $BDC$ is congruent to $DBA$ and angle $ADC$ is also a right angle. By the transitive property:

$mADB + mBDC = mDBA + mABE$

$mBDC = mDBA$

$mADB + mBDC = mBDC + mABE$

$mADB = mABE$

Next, because every triangle has a degree measure of 180, angle $E$ and angle $DBA$ are congruent.


Hence $BE/AB = DB/AD$, and therefore $BE = AB\cdot DB/AD = 20/3$.

Also triangle $CBF$ is similar to $ABD$. Hence $BF/BC = DB/AB$, and therefore $BF=BC\cdot DB / AB = 15/4$.

We then have $EF = EB+BF = \frac{20}3 + \frac{15}4 = \frac{80 + 45}{12} = \boxed{\frac{125}{12}}$.

Solution 2

Since $BD$ is the altitude from $B$ to $EF$, we can use the equation $BD^2 = EB\cdot BF$.

Looking at the angles, we see that triangle $EAB$ is similar to $DCB$. Because of this, $\frac{AB}{CB} = \frac{EB}{DB}$. From the given information and the Pythagorean theorem, $AB=4$, $CB=3$, and $DB=5$. Solving gives $EB=20/3$.

We can use the above formula to solve for $BF$. $BD^2 = 20/3\cdot BF$. Solve to obtain $BF=15/4$.

We now know $EB$ and $BF$. $EF = EB+BF = \frac{20}3 + \frac{15}4 = \frac{80 + 45}{12} = \boxed{\frac{125}{12}}$.

See Also

2009 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions