Difference between revisions of "2006 AMC 8 Problems/Problem 6"
AlcumusGuy (talk | contribs) |
m |
||
Line 11: | Line 11: | ||
If the two rectangles were seperate, the perimeter would be <math> 2(2(2+4)=24 </math>. It easy to see that their connection erases 2 from each of the rectangles, so the final perimeter is <math> 24-2 \times 2 = \boxed{\textbf{(C)}\ 20} </math>. | If the two rectangles were seperate, the perimeter would be <math> 2(2(2+4)=24 </math>. It easy to see that their connection erases 2 from each of the rectangles, so the final perimeter is <math> 24-2 \times 2 = \boxed{\textbf{(C)}\ 20} </math>. | ||
+ | ==See Also== | ||
{{AMC8 box|year=2006|num-b=5|num-a=7}} | {{AMC8 box|year=2006|num-b=5|num-a=7}} |
Revision as of 18:53, 24 December 2012
Problem
The letter T is formed by placing two inch rectangles next to each other, as shown. What is the perimeter of the T, in inches?
Solution
If the two rectangles were seperate, the perimeter would be . It easy to see that their connection erases 2 from each of the rectangles, so the final perimeter is .
See Also
2006 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |