Difference between revisions of "2012 AMC 8 Problems/Problem 15"

Line 1: Line 1:
 +
==Problem==
 
The smallest number greater than 2 that leaves a remainder of 2 when divided by 3, 4, 5, or 6 lies between what numbers?
 
The smallest number greater than 2 that leaves a remainder of 2 when divided by 3, 4, 5, or 6 lies between what numbers?
  

Revision as of 11:57, 9 December 2012

Problem

The smallest number greater than 2 that leaves a remainder of 2 when divided by 3, 4, 5, or 6 lies between what numbers?

$\textbf{(A)}\hspace{.05in}40\text{ and }50\qquad\textbf{(B)}\hspace{.05in}51\text{ and }55\qquad\textbf{(C)}\hspace{.05in}56\text{ and }60\qquad\textbf{(D)}\hspace{.05in}61\text{ and }65\qquad\textbf{(E)}\hspace{.05in}66\text{ and }99$

Solution

To find the answer to this problem, we need to find the least common multiple of $3$, $4$, $5$, $6$ and add $2$ to the result. The least common multiple of the four number is $60$, and adding $2$, we find the number we want is $62$. Now we need to find the range which contains $62$. The only such range and our final answer is $\boxed{\textbf{(D)}\ 61\text{ and }65}$.

See Also

2012 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions