Difference between revisions of "2010 AMC 8 Problems/Problem 23"
(→See Also) |
DaChickenInc (talk | contribs) (→Solution) |
||
Line 21: | Line 21: | ||
<math>1^2\pi=\pi</math> | <math>1^2\pi=\pi</math> | ||
− | Finally the ratio of the combined areas of the two semicircles to the area of circle <math>O</math> is <math>\boxed{\textbf{( | + | Finally the ratio of the combined areas of the two semicircles to the area of circle <math>O</math> is <math>\boxed{\textbf{(B)}\ \frac{1}{2}}</math>. |
==See Also== | ==See Also== | ||
{{AMC8 box|year=2010|num-b=22|num-a=24}} | {{AMC8 box|year=2010|num-b=22|num-a=24}} |
Revision as of 18:43, 6 November 2012
Problem
Semicircles and pass through the center . What is the ratio of the combined areas of the two semicircles to the area of circle ?
Solution
According to the pythagorean theorem, The radius of the larger circle is:
Therefore the area of the larger circle is:
Using the coordinate plane given we find that the radius of the two semicircles to be 1. Therefore the area of the two semicircles is:
Finally the ratio of the combined areas of the two semicircles to the area of circle is .
See Also
2010 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |