Difference between revisions of "2011 AMC 8 Problems/Problem 17"
Line 1: | Line 1: | ||
+ | ==Problem== | ||
Let <math>w</math>, <math>x</math>, <math>y</math>, and <math>z</math> be whole numbers. If <math>2^w \cdot 3^x \cdot 5^y \cdot 7^z = 588</math>, then what does <math>2w + 3x + 5y + 7z</math> equal? | Let <math>w</math>, <math>x</math>, <math>y</math>, and <math>z</math> be whole numbers. If <math>2^w \cdot 3^x \cdot 5^y \cdot 7^z = 588</math>, then what does <math>2w + 3x + 5y + 7z</math> equal? | ||
Revision as of 18:15, 4 November 2012
Problem
Let , , , and be whole numbers. If , then what does equal?
Solution
The prime factorization of is We can see and Because
See Also
2011 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 16 |
Followed by Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |