Difference between revisions of "1985 USAMO Problems"

m (Problem 5)
m (Problem 5)
Line 29: Line 29:
  
 
==Problem 5==
 
==Problem 5==
<math>0\le a_1\le a_2\le a_3\le \cdots</math> is an unbounded sequence of integers. Let <math>b_n \equal{} m</math> if <math>a_m</math> is the first member of the sequence to equal or exceed <math>n</math>. Given that <math>a_{19}=85</math>, what is the maximum possible value of <math>a_1+a_2+\cdots a_{19}+b_1+b_2+\cdots b_{85}?</math>
+
UNDETERMINED
  
 
[[1985 USAMO Problems/Problem 5 | Solution]]
 
[[1985 USAMO Problems/Problem 5 | Solution]]

Revision as of 13:46, 17 September 2012

Problem 1

Determine whether or not there are any positive integral solutions of the simultaneous equations \[x_1^2+x_2^2+\cdots+x_{1985}^2=y^3\\\\ x_1^3+x_2^3+\cdots+x_{1985}^3=z^2\] with distinct integers $x_1,x_2,\cdots,x_{1985}$.

Solution

Problem 2

Determine each real root of

$x^4-(2\cdot10^{10}-1)x^3-x+10^{20}+10^{10}-1=0$

correct to four decimal places.

Solution

Problem 3

Let $A,B,C,D$ denote four points in space such that at most one of the distances $AB,AC,AD,BC,BD,CD$ is greater than $1$. Determine the maximum value of the sum of the six distances.

Solution

Problem 4

Let $a_1,a_2,a_3,\cdots$ be a non-decreasing sequence of positive integers. For $m\ge1$, define $b_m=\min\{n: a_n \ge m\}$, that is, $b_m$ is the minimum value of $n$ such that $a_n\ge m$. If $a_{19}=85$, determine the maximum value of

$a_1+a_2+\cdots+a_{19}+b_1+b_2+\cdots+b_{85}$.

Solution

Problem 5

UNDETERMINED

Solution

See Also

1985 USAMO (ProblemsResources)
Preceded by
1984 USAMO
Followed by
1986 USAMO
1 2 3 4 5
All USAMO Problems and Solutions