Difference between revisions of "Mock AIME 3 Pre 2005 Problems/Problem 6"

(Solution)
m (Solution)
Line 13: Line 13:
 
&= \frac{1}{\sqrt{2}}\sum_{n = 1}^{9800} \left(\sqrt{n+1}-\sqrt{n-1}\right) \&#036;</math>
 
&= \frac{1}{\sqrt{2}}\sum_{n = 1}^{9800} \left(\sqrt{n+1}-\sqrt{n-1}\right) \&#036;</math>
  
This is a [[telescope|telescoping]] series; note that when we expand the summation, all of the intermediary terms cancel, leaving us with <math>\frac{1}{\sqrt{2}}\left(\sqrt{9801}+\sqrt{9800}-\sqrt{1}-\sqrt{0}\right) = 70 + 49\sqrt{2}</math>, and <math>p+q+r=\boxed{121}</math>.
+
This is a [[telescoping series]]; note that when we expand the summation, all of the intermediary terms cancel, leaving us with <math>\frac{1}{\sqrt{2}}\left(\sqrt{9801}+\sqrt{9800}-\sqrt{1}-\sqrt{0}\right) = 70 + 49\sqrt{2}</math>, and <math>p+q+r=\boxed{121}</math>.
  
 
==See Also==
 
==See Also==

Revision as of 17:17, 11 August 2012

Problem

Let $S$ denote the value of the sum

\[\sum_{n = 1}^{9800} \frac{1}{\sqrt{n + \sqrt{n^2 - 1}}}\]

$S$ can be expressed as $p + q \sqrt{r}$, where $p, q,$ and $r$ are positive integers and $r$ is not divisible by the square of any prime. Determine $p + q + r$.

Solution

Notice that $\sqrt{n + \sqrt{n^2 - 1}} = \frac{1}{\sqrt{2}}\sqrt{2n + 2\sqrt{(n+1)(n-1)}} = \frac{1}{\sqrt{2}}\left(\sqrt{n+1}+\sqrt{n-1}\right)$. Thus, we have

$\begin{align*} \sum_{n = 1}^{9800} \frac{1}{\sqrt{n + \sqrt{n^2 - 1}}} &= \sqrt{2}\sum_{n = 1}^{9800} \frac{1}{\sqrt{n+1}+\sqrt{n-1}} \\ &= \frac{1}{\sqrt{2}}\sum_{n = 1}^{9800} \left(\sqrt{n+1}-\sqrt{n-1}\right) \&#036;$ (Error compiling LaTeX. Unknown error_msg)

This is a telescoping series; note that when we expand the summation, all of the intermediary terms cancel, leaving us with $\frac{1}{\sqrt{2}}\left(\sqrt{9801}+\sqrt{9800}-\sqrt{1}-\sqrt{0}\right) = 70 + 49\sqrt{2}$, and $p+q+r=\boxed{121}$.

See Also

Mock AIME 3 Pre 2005 (Problems, Source)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15