Difference between revisions of "User talk:Baijiangchen"

Line 8: Line 8:
  
 
<math>W(n)=(2n-1)!!</math>
 
<math>W(n)=(2n-1)!!</math>
 +
 +
==Sam's stuff==
 +
Let <math>W(n)=\sum_{i=1}^{n}(\binom{i-1}{n-1}W(i-1)(x-i)!(2^{x-i}))</math>

Revision as of 23:25, 21 July 2012

If:

$W(0):=1$

$W(n):=\sum_{i=0}^{n-1}({n-1 \choose i}W(i)(x-i-1)!(2^{x-i-1}))$

Then:

$W(n)=(2n-1)!!$

Sam's stuff

Let $W(n)=\sum_{i=1}^{n}(\binom{i-1}{n-1}W(i-1)(x-i)!(2^{x-i}))$