Difference between revisions of "1995 AJHSME Problems/Problem 15"

(Created page with "==Problem== What is the <math>100^\text{th}</math> digit to the right of the decimal point in the decimal form of <math>4/37</math>? <math>\text{(A)}\ 0 \qquad \text{(B)}\ 1 \q...")
 
(Problem)
Line 4: Line 4:
  
 
<math>\text{(A)}\ 0 \qquad \text{(B)}\ 1 \qquad \text{(C)}\ 2 \qquad \text{(D)}\ 7 \qquad \text{(E)}\ 8</math>
 
<math>\text{(A)}\ 0 \qquad \text{(B)}\ 1 \qquad \text{(C)}\ 2 \qquad \text{(D)}\ 7 \qquad \text{(E)}\ 8</math>
 +
 +
==Solution==
 +
 +
<math>\frac{4}{37}=\frac{12}{111}=\frac{108}{999}=0.108108108...</math>
 +
 +
Since this repeats every three digits, digit number x = digit number (x mod 3), and the 100th digit = (100 mod 3)th digit = 1st digit = 1 \text{(B)}

Revision as of 12:54, 5 July 2012

Problem

What is the $100^\text{th}$ digit to the right of the decimal point in the decimal form of $4/37$?

$\text{(A)}\ 0 \qquad \text{(B)}\ 1 \qquad \text{(C)}\ 2 \qquad \text{(D)}\ 7 \qquad \text{(E)}\ 8$

Solution

$\frac{4}{37}=\frac{12}{111}=\frac{108}{999}=0.108108108...$

Since this repeats every three digits, digit number x = digit number (x mod 3), and the 100th digit = (100 mod 3)th digit = 1st digit = 1 \text{(B)}