Difference between revisions of "1997 PMWC Problems/Problem T2"
(fmtting) |
|||
Line 22: | Line 22: | ||
That's just <math>1+2+3+4+5+6+7+8+9+10=\frac{10(10+1)}{2}=55</math>. | That's just <math>1+2+3+4+5+6+7+8+9+10=\frac{10(10+1)}{2}=55</math>. | ||
− | ==See | + | ==See Also== |
{{PMWC box|year=1997|num-b=T1|num-a=T3}} | {{PMWC box|year=1997|num-b=T1|num-a=T3}} | ||
[[Category:Introductory Algebra Problems]] | [[Category:Introductory Algebra Problems]] |
Revision as of 15:06, 15 May 2012
Problem
Evaluate
\begin{eqnarray*} && 1 \left(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}\right) \\ &+& 3\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}\right)\\ &+&5\left(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}\right)\\ &+&7\left(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}\right)\\ &+&9\left(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}\right)+11\left(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}\right)\\ &+&13\left(\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}\right)+15\left(\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}\right)\\ &+&17\left(\dfrac{1}{9}+\dfrac{1}{10}\right)+19\left(\dfrac{1}{10}\right) (Error compiling LaTeX. Unknown error_msg)
Solution
We can group them:
The sum of the first odd numbers is , so we can simplify:
That's just .
See Also
1997 PMWC (Problems) | ||
Preceded by Problem T1 |
Followed by Problem T3 | |
I: 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 T: 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 |