Difference between revisions of "1997 PMWC Problems/Problem T2"

(fmtting)
Line 22: Line 22:
 
That's just <math>1+2+3+4+5+6+7+8+9+10=\frac{10(10+1)}{2}=55</math>.
 
That's just <math>1+2+3+4+5+6+7+8+9+10=\frac{10(10+1)}{2}=55</math>.
  
==See also==
+
==See Also==
 
{{PMWC box|year=1997|num-b=T1|num-a=T3}}
 
{{PMWC box|year=1997|num-b=T1|num-a=T3}}
  
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]

Revision as of 15:06, 15 May 2012

Problem

Evaluate

\begin{eqnarray*}
&& 1 \left(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}\right) \\
&+& 3\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}\right)\\
&+&5\left(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}\right)\\
&+&7\left(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}\right)\\
&+&9\left(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}\right)+11\left(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}\right)\\
&+&13\left(\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}\right)+15\left(\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}\right)\\
&+&17\left(\dfrac{1}{9}+\dfrac{1}{10}\right)+19\left(\dfrac{1}{10}\right) (Error compiling LaTeX. Unknown error_msg)

Solution

We can group them:

\[\dfrac{1}{1}+\dfrac{1+3}{2}+\dfrac{1+3+5}{3}+\cdots+\dfrac{1+3+5+7+9+\ldots+19}{10}\]

The sum of the first $n$ odd numbers is $n^2$, so we can simplify:

\[\dfrac{1}{1}+\dfrac{4}{2}+\dfrac{9}{3}+\cdots+\dfrac{100}{10}\]

That's just $1+2+3+4+5+6+7+8+9+10=\frac{10(10+1)}{2}=55$.

See Also

1997 PMWC (Problems)
Preceded by
Problem T1
Followed by
Problem T3
I: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T: 1 2 3 4 5 6 7 8 9 10