Difference between revisions of "1950 AHSME Problems/Problem 41"
Line 10: | Line 10: | ||
==Solution== | ==Solution== | ||
− | {{ | + | |
+ | The vertex of a parabola is at <math>x=-\frac{b}{2a}</math> for <math>ax^2+bx+c</math>. Because <math>a>0</math>, the vertex is a minimum. Therefore <math>a(-\frac{b}{2a})^2+b(-\frac{b}{2a})+c=a(\frac{b^2}{4a^2})-\frac{b^2}{2a}+c=\frac{b^2}{4a}-\frac{2b^2}{4a}+c=-\frac{b^2}{4a}+c=\frac{4ac}{4a}-\frac {b^2}{4a}=\frac{4ac-b^2}{4a} \Rightarrow \mathrm{(D)}</math>. | ||
==See Also== | ==See Also== |
Revision as of 16:07, 1 May 2012
Problem
The least value of the function $ax^2\plus{}bx\plus{}c$ (Error compiling LaTeX. Unknown error_msg) with is:
Solution
The vertex of a parabola is at for . Because , the vertex is a minimum. Therefore .
See Also
1950 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 40 |
Followed by Problem 42 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 | ||
All AHSME Problems and Solutions |