Difference between revisions of "1950 AHSME Problems/Problem 26"

(Created page with "== Problem== If <math> \log_{10}{m}= b-\log_{10}{n} </math>, then <math>m=</math> <math> \textbf{(A)}\ \frac{b}{n}\qquad\textbf{(B)}\ bn\qquad\textbf{(C)}\ 10^{b}n\qquad\textbf...")
 
m
Line 11: Line 11:
  
 
{{AHSME box|year=1950|num-b=25|num-a=27}}
 
{{AHSME box|year=1950|num-b=25|num-a=27}}
 +
[[Category:Introductory Algebra Problems]]

Revision as of 13:30, 17 April 2012

Problem

If $\log_{10}{m}= b-\log_{10}{n}$, then $m=$

$\textbf{(A)}\ \frac{b}{n}\qquad\textbf{(B)}\ bn\qquad\textbf{(C)}\ 10^{b}n\qquad\textbf{(D)}\ b-10^{n}\qquad\textbf{(E)}\ \frac{10^{b}}{n}$

Solution

We have $b=\log_{10}{10^b}$. Substituting, we find $\log_{10}{m}= \log_{10}{10^b}-\log_{10}{n}$. Using $\log{a}-\log{b}=\log{\dfrac{a}{b}}$, the left side becomes $\log_{10}{\dfrac{10^b}{n}}$. Because $\log_{10}{m}=\log_{10}{\dfrac{10^b}{n}}$, $m=\boxed{\mathrm{(E) }\dfrac{10^b}{n}}$.

See Also

1950 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 25
Followed by
Problem 27
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions