Difference between revisions of "1950 AHSME Problems/Problem 14"

(Created page with "== Problem== For the simultaneous equations <cmath>2x-3y=8\\6y-4x=9</cmath> <math> \textbf{(A)}\ x=4,y=0\qquad\textbf{(B)}\ x=0,y=\frac{3}{2}\qquad\textbf{(C)}\ x=0,y=0\qquad\\...")
 
m
Line 21: Line 21:
  
 
{{AHSME box|year=1950|num-b=13|num-a=15}}
 
{{AHSME box|year=1950|num-b=13|num-a=15}}
 +
 +
[[Category:Introductory Algebra Problems]]

Revision as of 13:26, 17 April 2012

Problem

For the simultaneous equations \[2x-3y=8\\6y-4x=9\]

$\textbf{(A)}\ x=4,y=0\qquad\textbf{(B)}\ x=0,y=\frac{3}{2}\qquad\textbf{(C)}\ x=0,y=0\qquad\\ \textbf{(D)}\ \text{There is no solution}\qquad\textbf{(E)}\ \text{There are an infinite number of solutions}$

Solution

Try to solve this system of equations using the elimination method.

\begin{align*} -2(2x-3y)&=-2(8)\\ 6y-4x&=-16\\ 6y-4x&=9\\ 0&=-7 \end{align*}

Something is clearly contradictory so $\boxed{\mathrm{(D)}\text{ There is no solution}.}$

See Also

1950 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions