Difference between revisions of "1963 IMO Problems/Problem 3"
(New page: ==Problem== In an <math>n</math>-gon all of whose interior angles are equal, the lengths of consecutive sides satisfy the relation <center><math>a_1\ge a_2\ge \cdots \ge a_n</math>.</cente...) |
(added solution) |
||
Line 5: | Line 5: | ||
==Solution== | ==Solution== | ||
− | {{ | + | Define the vector <math>\vec{v_i}</math> to equal <math>\cos{\left(\frac{2\pi}{n}i\right)}\vec{i}+\sin{\left(\frac{2\pi}{n}i\right)}\vec{j}</math>. Now rotate and translate the given polygon in the Cartesian Coordinate Plane so that the side with length <math>a_i</math> is parallel to <math>\vec{v_i}</math>. We then have that |
+ | |||
+ | <cmath>\sum_{i=1}^{n} a_i\vec{v_i}=\vec{0}\Rightarrow \sum_{i=1}^{n} a_i\cos{\left(\frac{2\pi}{n}i\right)} = \sum_{i=1}^{n} a_i\sin{\left(\frac{2\pi}{n}i\right)} =0</cmath> | ||
+ | |||
+ | But <math>a_i\geq a_{n-i}</math> for all <math>i\leq \lfloor \frac{n}{2}\rfloor</math>, so | ||
+ | |||
+ | <cmath>a_i \sin{\left(\frac{2\pi}{n}i\right)} = -a_i\sin{\left(\frac{2\pi}{n}(n-i)\right)} \geq -a_{n-i}\sin{\left(\frac{2\pi}{n}(n-i)\right)} </cmath> | ||
+ | |||
+ | for all <math>i\leq \lfloor \frac{n}{2}\rfloor</math>. This shows that <math>a_i \sin{\left(\frac{2\pi}{n}i\right)}+a_{n-i}\sin{\left(\frac{2\pi}{n}(n-i)\right)}\geq 0</math>, with equality when <math>a_i=a_{n-i}</math>. Therefore | ||
+ | |||
+ | <cmath>\sum_{i=1}^{n} a_i \sin{\left(\frac{2\pi}{n}i\right)}=\sum_{i=1}^{\lfloor \frac{n}{2}} a_i \sin{\left(\frac{2\pi}{n}i\right)}+a_{n-i}\sin{\left(\frac{2\pi}{n}(n-i)\right)} \geq 0</cmath> | ||
+ | |||
+ | There is equality only when <math>a_i=a_{n-i}</math> for all <math>i</math>. This implies that <math>a_1=a_{n-1}</math> and <math>a_2=a_n</math>, so we have that <math>a_1=a_2+\cdots =a_n</math>. <math>\blacksquare</math> | ||
==See Also== | ==See Also== | ||
{{IMO box|year=1963|num-b=2|num-a=4}} | {{IMO box|year=1963|num-b=2|num-a=4}} |
Revision as of 10:02, 29 March 2012
Problem
In an -gon all of whose interior angles are equal, the lengths of consecutive sides satisfy the relation
Prove that .
Solution
Define the vector to equal . Now rotate and translate the given polygon in the Cartesian Coordinate Plane so that the side with length is parallel to . We then have that
But for all , so
for all . This shows that , with equality when . Therefore
There is equality only when for all . This implies that and , so we have that .
See Also
1963 IMO (Problems) • Resources | ||
Preceded by Problem 2 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 4 |
All IMO Problems and Solutions |