Difference between revisions of "2012 AIME I Problems/Problem 15"
m (→Solution) |
(→Problem 15) |
||
Line 1: | Line 1: | ||
==Problem 15== | ==Problem 15== | ||
− | There are <math>n</math> mathematicians seated around a circular table with <math>n</math> seats numbered <math>1,</math> <math>2,</math> <math>3,</math> <math>...,</math> <math>n</math> in clockwise order. After a break | + | There are <math>n</math> mathematicians seated around a circular table with <math>n</math> seats numbered <math>1,</math> <math>2,</math> <math>3,</math> <math>...,</math> <math>n</math> in clockwise order. After a break they again sit around the table. The mathematicians note that there is a positive integer <math>a</math> such that |
<UL> | <UL> |
Revision as of 19:23, 18 March 2012
Problem 15
There are mathematicians seated around a circular table with
seats numbered
in clockwise order. After a break they again sit around the table. The mathematicians note that there is a positive integer
such that
-
(






-
(

Find the number of possible values of with
Solution
It is a well-known fact that the set forms a complete set of residues if and only if
is relatively prime to
.
Thus, we have is relatively prime to
. In addition, for any seats
and
, we must have
not be equivalent to either
or
modulo
to satisfy our conditions. These simplify to
and
modulo
, so multiplication by both
and
must form a complete set of residues mod
as well.
Thus, we have ,
, and
are relatively prime to
. We must find all
for which such an
exists.
obviously cannot be a multiple of
or
, but for any other
, we can set
, and then
and
. All three of these will be relatively prime to
, since two numbers
and
are relatively prime if and only if
is relatively prime to
. In this case,
,
, and
are all relatively prime to
, so
works.
Now we simply count all that are not multiples of
or
, which is easy using inclusion-exclusion. We get a final answer of
See also
2012 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |