Difference between revisions of "2010 AIME I Problems/Problem 6"
(→Solution 3) |
(→Solution 3) |
||
Line 50: | Line 50: | ||
For all <math>x > 1</math>; note that the inequality signs are flipped if <math>x < 1</math>, and that the division is invalid for <math>x = 1</math>. However, | For all <math>x > 1</math>; note that the inequality signs are flipped if <math>x < 1</math>, and that the division is invalid for <math>x = 1</math>. However, | ||
− | <math>\lim_{x \to 1} x - 2 = | + | <math>\lim_{x \to 1} x - 2 = \lim_{x \to 1} 2x - 3 = -1</math>, |
− | |||
and thus by the [[sandwich theorem]] <math>lim_{x \to 1} Q'(x) = -1</math>; by the definition of a continuous function, <math>Q'(1) = -1</math>. Also, <math>Q(11) = 170</math>, so <math>Q'(11) = 170/(11-1) = 17</math>; plugging in and solving, <math>Q'(x) = (9/5)(x - 1) - 1</math>. Thus <math>Q(16) = 390</math>, and so <math>P(16) = \boxed{406}</math>. | and thus by the [[sandwich theorem]] <math>lim_{x \to 1} Q'(x) = -1</math>; by the definition of a continuous function, <math>Q'(1) = -1</math>. Also, <math>Q(11) = 170</math>, so <math>Q'(11) = 170/(11-1) = 17</math>; plugging in and solving, <math>Q'(x) = (9/5)(x - 1) - 1</math>. Thus <math>Q(16) = 390</math>, and so <math>P(16) = \boxed{406}</math>. |
Revision as of 17:53, 11 March 2012
Problem
Let be a quadratic polynomial with real coefficients satisfying
for all real numbers
, and suppose
. Find
.
Solution
Solution 1
![[asy] import graph; real min = -0.5, max = 2.5; pen dark = linewidth(1); real P(real x) { return 8*(x-1)^2/5+1; } real Q(real x) { return (x-1)^2+1; } real R(real x) { return 2*(x-1)^2+1; } draw(graph(P,min,max),dark); draw(graph(Q,min,max),linetype("6 2")+linewidth(0.7)); draw(graph(R,min,max),linetype("6 2")+linewidth(0.7)); dot((1,1)); label("$P(x)$",(max,P(max)),E,fontsize(10)); label("$Q(x)$",(max,Q(max)),E,fontsize(10)); label("$R(x)$",(max,R(max)),E,fontsize(10)); /* axes */ Label f; f.p=fontsize(8); xaxis(-2, 3, Ticks(f, 5, 1)); yaxis(-1, 5, Ticks(f, 6, 1)); [/asy]](http://latex.artofproblemsolving.com/8/6/4/8642816d5b50f02498e44e455af5a0ae225ce976.png)
Let ,
. Completing the square, we have
, and
, so it follows that
for all
(by the Trivial Inequality).
Also, , so
, and
obtains its minimum at the point
. Then
must be of the form
for some constant
; substituting
yields
. Finally,
.
Solution 2
It can be seen that the function must be in the form
for some real
and
. This is because the derivative of
is
, and a global minimum occurs only at
(in addition, because of this derivative, the vertex of any quadratic polynomial occurs at
). Substituting
and
we obtain two equations:


Solving, we get and
, so
. Therefore,
.
Solution 3
Let ; note that
. Setting
, we find that
and therefore
; this is true iff
, so
.
Let ; clearly
, so we can write
, where
is some linear function. Plug
into the given inequality:
, and thus
For all ; note that the inequality signs are flipped if
, and that the division is invalid for
. However,
,
and thus by the sandwich theorem ; by the definition of a continuous function,
. Also,
, so
; plugging in and solving,
. Thus
, and so
.
See also
2010 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |