Difference between revisions of "1984 AIME Problems/Problem 13"

m (cleanup)
(Solution 1)
Line 5: Line 5:
 
== Solution ==
 
== Solution ==
 
=== Solution 1 ===
 
=== Solution 1 ===
We know that <math>\tan(\arctan(x)) = x</math> so we can repeatedly apply the addition formula, <math>\tan(x+y) = \frac{\tan(x)+\tan(y)}{1-\tan(x)\tan(y)}</math>. Let <math>a = \arccot(3)</math>, <math>b=\arccot(7)</math>, <math>c=\arccot(13)</math>, and <math>d=\arccot(21)</math>. We have
+
We know that <math>\tan(\arctan(x)) = x</math> so we can repeatedly apply the addition formula, <math>\tan(x+y) = \frac{\tan(x)+\tan(y)}{1-\tan(x)\tan(y)}</math>. Let <math>a = \cot^{-1}(3)</math>, <math>b=\cot^{-1}(7)</math>, <math>c=\cot^{-1}(13)</math>, and <math>d=\cot^{-1}(21)</math>. We have
  
 
<center><p><math>\tan(a)=\frac{1}{3},\quad\tan(b)=\frac{1}{7},\quad\tan(c)=\frac{1}{13},\quad\tan(d)=\frac{1}{21}</math>,</p></center>
 
<center><p><math>\tan(a)=\frac{1}{3},\quad\tan(b)=\frac{1}{7},\quad\tan(c)=\frac{1}{13},\quad\tan(d)=\frac{1}{21}</math>,</p></center>

Revision as of 03:08, 24 February 2012

Problem

Find the value of $10\cot(\cot^{-1}3+\cot^{-1}7+\cot^{-1}13+\cot^{-1}21).$

Solution

Solution 1

We know that $\tan(\arctan(x)) = x$ so we can repeatedly apply the addition formula, $\tan(x+y) = \frac{\tan(x)+\tan(y)}{1-\tan(x)\tan(y)}$. Let $a = \cot^{-1}(3)$, $b=\cot^{-1}(7)$, $c=\cot^{-1}(13)$, and $d=\cot^{-1}(21)$. We have

$\tan(a)=\frac{1}{3},\quad\tan(b)=\frac{1}{7},\quad\tan(c)=\frac{1}{13},\quad\tan(d)=\frac{1}{21}$,

So

$\tan(a+b) = \frac{\frac{1}{3}+\frac{1}{7}}{1-\frac{1}{21}} = \frac{1}{2}$

and

$\tan(c+d) = \frac{\frac{1}{13}+\frac{1}{21}}{1-\frac{1}{273}} = \frac{1}{8}$,

so

$\tan((a+b)+(c+d)) = \frac{\frac{1}{2}+\frac{1}{8}}{1-\frac{1}{16}} = \frac{2}{3}$.

Thus our answer is $10\cdot\frac{3}{2}=15$.

Solution 2

Apply the formula $\cot^{-1}x + \cot^{-1} y = \cot^{-1}\left(\frac {xy-1}{x+y}\right)$ repeatedly.

See also

1984 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions