Difference between revisions of "2012 AMC 12A Problems/Problem 25"

(Solution)
Line 7: Line 7:
 
== Solution ==
 
== Solution ==
  
{{AMC12 box|year=2012|ab=A|num-b=24|num-a=}}
+
{{AMC12 box|year=2012|ab=A|num-b=24|after=Last Problem}}

Revision as of 15:18, 19 February 2012

Problem

Let $f(x)=|2\{x\}-1|$ where $\{x\}$ denotes the fractional part of $x$. The number $n$ is the smallest positive integer such that the equation \[nf(xf(x))=x\] has at least $2012$ real solutions. What is $n$? Note: the fractional part of $x$ is a real number $y=\{x\}$ such that $0\le y<1$ and $x-y$ is an integer.

$\textbf{(A)}\ 30\qquad\textbf{(B)}\ 31\qquad\textbf{(C)}\ 32\qquad\textbf{(D)}\ 62\qquad\textbf{(E)}\64$ (Error compiling LaTeX. Unknown error_msg)

Solution

2012 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions