Difference between revisions of "2012 AMC 10A Problems/Problem 18"

Line 1: Line 1:
 +
{{duplicate|[[2012 AMC 12A Problems|2012 AMC 12A #14]] and [[2012 AMC 10A Problems|2012 AMC 10A #18]]}}
 +
 
== Problem 18 ==
 
== Problem 18 ==
  
Line 39: Line 41:
  
 
{{AMC10 box|year=2012|ab=A|num-b=17|num-a=19}}
 
{{AMC10 box|year=2012|ab=A|num-b=17|num-a=19}}
 +
{{AMC12 box|year=2012|ab=A|num-b=13|num-a=15}}

Revision as of 13:30, 12 February 2012

The following problem is from both the 2012 AMC 12A #14 and 2012 AMC 10A #18, so both problems redirect to this page.

Problem 18

The closed curve in the figure is made up of 9 congruent circular arcs each of length $\frac{2\pi}{3}$, where each of the centers of the corresponding circles is among the vertices of a regular hexagon of side 2. What is the area enclosed by the curve?

[asy] defaultpen(fontsize(6pt)); dotfactor=4; label("$\circ$",(0,1)); label("$\circ$",(0.865,0.5)); label("$\circ$",(-0.865,0.5)); label("$\circ$",(0.865,-0.5)); label("$\circ$",(-0.865,-0.5)); label("$\circ$",(0,-1)); dot((0,1.5)); dot((-0.4325,0.75)); dot((0.4325,0.75)); dot((-0.4325,-0.75)); dot((0.4325,-0.75)); dot((-0.865,0)); dot((0.865,0)); dot((-1.2975,-0.75)); dot((1.2975,-0.75)); draw(Arc((0,1),0.5,210,-30)); draw(Arc((0.865,0.5),0.5,150,270)); draw(Arc((0.865,-0.5),0.5,90,-150)); draw(Arc((0.865,-0.5),0.5,90,-150)); draw(Arc((0,-1),0.5,30,150)); draw(Arc((-0.865,-0.5),0.5,330,90)); draw(Arc((-0.865,0.5),0.5,-90,30)); [/asy]

$\textbf{(A)}\ 2\pi+6\qquad\textbf{(B)}\ 2\pi+4\sqrt{3}\qquad\textbf{(C)}\ 3\pi+4\qquad\textbf{(D)}\ 2\pi+3\sqrt{3}+2\qquad\textbf{(E)}\ \pi+6\sqrt{3}$

Solution

Draw the hexagon between the centers of the circles, and compute its area ($6(0.5)(2\sqrt{3})=6\sqrt{3}$). Then add the areas of the three sectors outside the hexagon ($2\pi$) and subtract the areas of the three sectors inside the hexagon ($\pi$) to get the area enclosed in the curved figure ($\pi+6\sqrt{3}$), which is $\boxed{\textbf{(E)}\ \pi+6\sqrt{3}}$.

See Also

2012 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2012 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions