Difference between revisions of "Mathtime Version 1 Edition 1"
m (moved Mathtime Edition 1 to Mathtime Version 1 Edition 1: Need more specific title.) |
|||
Line 4: | Line 4: | ||
== Number Theory == | == Number Theory == | ||
− | =Problem 1= | + | ===Problem 1=== |
[http://www.artofproblemsolving.com/Forum/viewtopic.php?f=768&t=447930 <math>\boxed{1}</math>] | [http://www.artofproblemsolving.com/Forum/viewtopic.php?f=768&t=447930 <math>\boxed{1}</math>] | ||
What is the last digit of the product of all odd integers between <math>1</math> and <math>1,000?</math> | What is the last digit of the product of all odd integers between <math>1</math> and <math>1,000?</math> | ||
− | =Problem 2= | + | ===Problem 2=== |
[http://www.artofproblemsolving.com/Forum/viewtopic.php?f=768&t=447931 <math>\boxed{2}</math>] | [http://www.artofproblemsolving.com/Forum/viewtopic.php?f=768&t=447931 <math>\boxed{2}</math>] | ||
Line 16: | Line 16: | ||
(Inspiration of Problem: Alcumus/AMC 8) | (Inspiration of Problem: Alcumus/AMC 8) | ||
− | =Problem 3= | + | ===Problem 3=== |
[http://www.artofproblemsolving.com/Forum/viewtopic.php?f=768&t=447932 <math>\boxed{3}</math>] | [http://www.artofproblemsolving.com/Forum/viewtopic.php?f=768&t=447932 <math>\boxed{3}</math>] | ||
What is <math>\dfrac{4042110}{4038090}?</math> | What is <math>\dfrac{4042110}{4038090}?</math> | ||
− | =Problem 4= | + | ===Problem 4=== |
[http://www.artofproblemsolving.com/Forum/viewtopic.php?f=768&t=447935 <math>\boxed{4}</math>] | [http://www.artofproblemsolving.com/Forum/viewtopic.php?f=768&t=447935 <math>\boxed{4}</math>] | ||
What is the sum of the digits of the square root of <math>9801?</math> | What is the sum of the digits of the square root of <math>9801?</math> | ||
− | =Problem 5= | + | ===Problem 5=== |
[http://www.artofproblemsolving.com/Forum/viewtopic.php?f=768&t=447936 <math>\boxed{5}</math>] | [http://www.artofproblemsolving.com/Forum/viewtopic.php?f=768&t=447936 <math>\boxed{5}</math>] | ||
Find the sum of the digits of <math>35435_{7}+13362_{7}</math> in base <math>7</math>. | Find the sum of the digits of <math>35435_{7}+13362_{7}</math> in base <math>7</math>. | ||
− | =Problem 6= | + | ===Problem 6=== |
[http://www.artofproblemsolving.com/Forum/viewtopic.php?f=768&t=447937 <math>\boxed{6}</math>] | [http://www.artofproblemsolving.com/Forum/viewtopic.php?f=768&t=447937 <math>\boxed{6}</math>] | ||
Find <math>111_{2}+222_{4}+444_{8}</math> in binary form. | Find <math>111_{2}+222_{4}+444_{8}</math> in binary form. | ||
− | =Problem 7= | + | ===Problem 7=== |
[http://www.artofproblemsolving.com/Forum/viewtopic.php?f=768&t=447938 <math>\boxed{7}</math>] | [http://www.artofproblemsolving.com/Forum/viewtopic.php?f=768&t=447938 <math>\boxed{7}</math>] | ||
Find the difference between <math>444_{8}</math> and <math>222_{4}</math> in base 8. | Find the difference between <math>444_{8}</math> and <math>222_{4}</math> in base 8. | ||
− | =Problem 8= | + | ===Problem 8=== |
[http://www.artofproblemsolving.com/Forum/viewtopic.php?f=768&t=447939 <math>\boxed{8}</math>] | [http://www.artofproblemsolving.com/Forum/viewtopic.php?f=768&t=447939 <math>\boxed{8}</math>] | ||
In what base is <math>66+87+85+48</math> equal to <math>132?</math> | In what base is <math>66+87+85+48</math> equal to <math>132?</math> | ||
− | =Problem 9= | + | ===Problem 9=== |
[http://www.artofproblemsolving.com/Forum/viewtopic.php?f=768&t=447940 <math>\boxed{9}</math>] | [http://www.artofproblemsolving.com/Forum/viewtopic.php?f=768&t=447940 <math>\boxed{9}</math>] | ||
Find the value of <math>324_{5}+18_{10}</math> in base ten. | Find the value of <math>324_{5}+18_{10}</math> in base ten. | ||
− | =Problem 10= | + | ===Problem 10=== |
[http://www.artofproblemsolving.com/Forum/viewtopic.php?f=768&t=447941 <math>\boxed{10}</math>] | [http://www.artofproblemsolving.com/Forum/viewtopic.php?f=768&t=447941 <math>\boxed{10}</math>] | ||
What is <math>0_{4}</math>, <math>1_{4}</math>, <math>2_{4}</math>, <math>3_{4}</math>, and <math>1230_{4}</math> in binary form? | What is <math>0_{4}</math>, <math>1_{4}</math>, <math>2_{4}</math>, <math>3_{4}</math>, and <math>1230_{4}</math> in binary form? | ||
− | =Problem 11= | + | ===Problem 11=== |
[http://www.artofproblemsolving.com/Forum/viewtopic.php?f=768&t=447942 <math>\boxed{11}</math>] | [http://www.artofproblemsolving.com/Forum/viewtopic.php?f=768&t=447942 <math>\boxed{11}</math>] | ||
<math>n\equiv0\pmod{3}</math>, <math>n\equiv0\pmod{7}</math>, and <math>n\equiv1\pmod{8}</math>. What is the smallest positive integer that satisfies the above? | <math>n\equiv0\pmod{3}</math>, <math>n\equiv0\pmod{7}</math>, and <math>n\equiv1\pmod{8}</math>. What is the smallest positive integer that satisfies the above? |
Latest revision as of 10:29, 2 December 2011
Mathtime Magazine Volume 1 Edition 1 is here
Contents
Number Theory
Problem 1
What is the last digit of the product of all odd integers between and
Problem 2
What is the th letter in the sequence
(Inspiration of Problem: Alcumus/AMC 8)
Problem 3
What is
Problem 4
What is the sum of the digits of the square root of
Problem 5
Find the sum of the digits of in base .
Problem 6
Find in binary form.
Problem 7
Find the difference between and in base 8.
Problem 8
In what base is equal to
Problem 9
Find the value of in base ten.
Problem 10
What is , , , , and in binary form?
Problem 11
, , and . What is the smallest positive integer that satisfies the above?