Difference between revisions of "2011 AMC 8 Problems/Problem 19"
(Problem 19) |
(→Solution) |
||
Line 22: | Line 22: | ||
==Solution== | ==Solution== | ||
+ | The figure can be divided into <math>7</math> sections. The number of rectangles with just one section is <math>3.</math> The number of rectangles with two sections is <math>5.</math> There are none with only three sections. The number of rectangles with four sections is <math>3.</math> <math>3+5+3=\boxed{\textbf{(D)}\ 11}</math> | ||
==See Also== | ==See Also== | ||
{{AMC8 box|year=2011|num-b=18|num-a=20}} | {{AMC8 box|year=2011|num-b=18|num-a=20}} |
Revision as of 21:20, 25 November 2011
How many rectangles are in this figure?
Solution
The figure can be divided into sections. The number of rectangles with just one section is The number of rectangles with two sections is There are none with only three sections. The number of rectangles with four sections is
See Also
2011 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |