Difference between revisions of "2003 AMC 8 Problems/Problem 1"

m (Problem 1)
Line 6: Line 6:
 
==Solution==
 
==Solution==
 
On a cube, there are <math> 12 </math> edges, <math> 8 </math> corners, and <math> 6 </math> faces. Adding them up gets <math> 12+8+6= \boxed{\mathrm{(E)}\ 26} </math>.
 
On a cube, there are <math> 12 </math> edges, <math> 8 </math> corners, and <math> 6 </math> faces. Adding them up gets <math> 12+8+6= \boxed{\mathrm{(E)}\ 26} </math>.
 +
 +
{{AMC8 box|year=2003|before=First <br />Question|num-a=2}}

Revision as of 08:36, 25 November 2011

Problem

Jamie counted the number of edges of a cube, Jimmy counted the numbers of corners, and Judy counted the number of faces. They then added the three numbers. What was the resulting sum?

$\mathrm{(A)}\ 12 \qquad\mathrm{(B)}\ 16 \qquad\mathrm{(C)}\ 20 \qquad\mathrm{(D)}\ 22 \qquad\mathrm{(E)}\ 26$

Solution

On a cube, there are $12$ edges, $8$ corners, and $6$ faces. Adding them up gets $12+8+6= \boxed{\mathrm{(E)}\ 26}$.

2003 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
First
Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions