Difference between revisions of "2005 AMC 12A Problems/Problem 15"
Math Kirby (talk | contribs) (→Problem) |
Math Kirby (talk | contribs) m (→Solution) |
||
Line 26: | Line 26: | ||
== Solution == | == Solution == | ||
− | + | ===Solution 1=== | |
Notice that the bases of both triangles are diameters of the circle. Hence the ratio of the areas is just the ratio of the heights of the triangles, or <math>\frac{CD}{CF}</math> (<math>F</math> is the foot of the [[perpendicular]] from <math>C</math> to <math>DE</math>). | Notice that the bases of both triangles are diameters of the circle. Hence the ratio of the areas is just the ratio of the heights of the triangles, or <math>\frac{CD}{CF}</math> (<math>F</math> is the foot of the [[perpendicular]] from <math>C</math> to <math>DE</math>). | ||
Line 41: | Line 41: | ||
− | + | ===Solution 2=== | |
Let the centre of the circle be <math>O</math>. | Let the centre of the circle be <math>O</math>. |
Revision as of 16:21, 24 November 2011
Problem
Let be a diameter of a circle and be a point on with . Let and be points on the circle such that and is a second diameter. What is the ratio of the area of to the area of ?
Solution
Solution 1
Notice that the bases of both triangles are diameters of the circle. Hence the ratio of the areas is just the ratio of the heights of the triangles, or ( is the foot of the perpendicular from to ).
Call the radius . Then , . Using the Pythagorean Theorem in , we get .
Now we have to find . Notice , so we can write the proportion:
By the Pythagorean Theorem in , we have .
Our answer is .
Solution 2
Let the centre of the circle be .
Note that .
is midpoint of .
is midpoint of Area of Area of Area of Area of .
See also
2005 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 14 |
Followed by Problem 16 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |