Difference between revisions of "1999 AMC 8 Problems/Problem 14"

(Solution of AMC 8 Problem, 1999, #14)
 
Line 1: Line 1:
Okay. There is a rectangle present, with both horizontal bases being <math>8</math> units in length. The excess units on the bottom base must then be 8. The fact that <math>AB</math> and <math>CD</math> are equal in length indicate, by the Pythagorean Theorem, that these excess lengths are equal. There are two with a total length of <math>8</math> units, so each is <math>4</math> units. The triangle has a hypotenuse of 5, because the triangles are <math>3-4-5</math> right triangles. So, the sides of the trapezoid are <math>8</math>, <math>5</math>, <math>16</math>, and <math>5</math>. Adding those up gives us the perimeter, <math>8 + 5 + 16 + 5 = 13 + 21 = 34</math> units.
+
There is a rectangle present, with both horizontal bases being <math>8</math> units in length. The excess units on the bottom base must then be 8. The fact that <math>AB</math> and <math>CD</math> are equal in length indicate, by the Pythagorean Theorem, that these excess lengths are equal. There are two with a total length of <math>8</math> units, so each is <math>4</math> units. The triangle has a hypotenuse of 5, because the triangles are <math>3-4-5</math> right triangles. So, the sides of the trapezoid are <math>8</math>, <math>5</math>, <math>16</math>, and <math>5</math>. Adding those up gives us the perimeter, <math>8 + 5 + 16 + 5 = 13 + 21 = 34</math> units.

Revision as of 12:40, 12 November 2011

There is a rectangle present, with both horizontal bases being $8$ units in length. The excess units on the bottom base must then be 8. The fact that $AB$ and $CD$ are equal in length indicate, by the Pythagorean Theorem, that these excess lengths are equal. There are two with a total length of $8$ units, so each is $4$ units. The triangle has a hypotenuse of 5, because the triangles are $3-4-5$ right triangles. So, the sides of the trapezoid are $8$, $5$, $16$, and $5$. Adding those up gives us the perimeter, $8 + 5 + 16 + 5 = 13 + 21 = 34$ units.