Difference between revisions of "Factor Theorem"

m
Line 1: Line 1:
The '''Factor Theorem''' says that if <math>P(x)</math> is a [[polynomial]], then <math>x-a</math> is a [[factor]] of <math>P(x)</math> [[iff]] <math>P(a)=0</math>.
+
The '''Factor Theorem''' says that if <math>P(x)</math> is a [[polynomial]], then <math>x-a</math> is a [[factor]] of <math>P(x)</math> if <math>P(a)=0</math>.
  
 
==Proof==
 
==Proof==

Revision as of 08:17, 11 November 2011

The Factor Theorem says that if $P(x)$ is a polynomial, then $x-a$ is a factor of $P(x)$ if $P(a)=0$.

Proof

If $x - a$ is a factor of $P(x)$, then $P(x) = (x - a)Q(x)$, where $Q(x)$ is a polynomial with $\deg(Q(x)) = \deg(P(x)) - 1$. Then $P(a) = (a - a)Q(a) = 0$.

Now suppose that $P(a) = 0$.

Apply division algorithm to get $P(x) = (x - a)Q(x) + R(x)$, where $Q(x)$ is a polynomial with $\deg(Q(x)) = \deg(P(x)) - 1$ and $R(x)$ is the remainder polynomial such that $0\le\deg(R(x)) < \deg(x - a) = 1$. This means that $R(x)$ can be at most a constant polynomial.

Substitute $x = a$ and get $P(a) = (a - a)Q(a) + R(a) = 0\Rightarrow R(a) = 0$. Since $R(x)$ is a constant polynomial, $R(x) = 0$ for all $x$.

Therefore, $P(x) = (x - a)Q(x)$, which shows that $x - a$ is a factor of $P(x)$.

This article is a stub. Help us out by expanding it.