ONLINE AMC 8 PREP WITH AOPS
Top scorers around the country use AoPS. Join training courses for beginners and advanced students.
VIEW CATALOG

Difference between revisions of "2004 AMC 8 Problems"

(Problem 9)
(Problem 4)
Line 18: Line 18:
  
 
==Problem 4==
 
==Problem 4==
 +
 +
'''The following information is needed to solve problems 4, 5 and 6.'''
 +
Ms. Hamilton’s eighth-grade class wants to participate in the an- nual three-person-team basketball tournament.
  
 
Lance, Sally, Joy, and Fred are chosen for the team. In how many ways can the three starters be chosen?
 
Lance, Sally, Joy, and Fred are chosen for the team. In how many ways can the three starters be chosen?

Revision as of 21:22, 21 October 2011

Problem 1

Ona map, a $12$-centimeter length represents $72$ kilometers. How many kilometers does a $17$-centimeter length represent?

$\textbf{(A)}\ 6\qquad\textbf{(B)}\ 102\qquad\textbf{(C)}\ 204\qquad\textbf{(D)}\ 864\qquad\textbf{(E)}\ 1224$

Problem 2

How many different four-digit numbers can be formed be rearranging the four digits in $2004$?

$\textbf{(A)}\ 4\qquad\textbf{(B)}\ 6\qquad\textbf{(C)}\ 16\qquad\textbf{(D)}\ 24\qquad\textbf{(E)}\ 81$

Problem 3

Twelve friends met for dinner at Oscar's Overstuffed Oyster House, and each ordered one meal. The portions were so large, there was enough food for $18$ people. If they shared, how many meals should they have ordered to have just enough food for the $12$ of them?

$\textbf{(A)}\ 8\qquad\textbf{(B)}\ 9\qquad\textbf{(C)}\ 10\qquad\textbf{(D)}\ 15\qquad\textbf{(E)}\ 18$

Problem 4

The following information is needed to solve problems 4, 5 and 6. Ms. Hamilton’s eighth-grade class wants to participate in the an- nual three-person-team basketball tournament.

Lance, Sally, Joy, and Fred are chosen for the team. In how many ways can the three starters be chosen?

$\textbf{(A)}2\qquad\textbf{(B)}4\qquad\textbf{(C)}6\qquad\textbf{(D)}8\qquad\textbf{(E)}10$

Problem 5

The losing team of each game is eliminated from the tournament. If sixteen teams compete, how many games will be played to determine the winner?

$\textbf{(A)}4\qquad\textbf{(B)}7\qquad\textbf{(C)}8\qquad\textbf{(D)}15\qquad\textbf{(E)}16$

Problem 6

After Sally takes $20$ shots, she has made $55\%$ of her shots. After she takes $5$ more shots, she raises her percentage to $56\%$. How many of the last $5$ shots did she make?

$\textbf{(A)}1\qquad\textbf{(B)}2\qquad\textbf{(C)}3\qquad\textbf{(D)}4\qquad\textbf{(E)}5$

Problem 7

An athlete's target heart rate, in beats per minute, is $80\%$ of the theoretical maximum heart rate. The maximum heart rate is found by subtracting the athlete's age, in years, from $220$. To the nearest whole number, what is the target heart rate of an athlete who is $26$ years old?

$\textbf{(A)}\ 134\qquad\textbf{(B)}\ 155\qquad\textbf{(C)}\ 176\qquad\textbf{(D)}\ 194\qquad\textbf{(E)}\ 243$

Problem 8

Find the number of two-digit positive integers whose digits total $7$.

$\mathrm{(A)\ 6 }\qquad\mathrm{(B)\ 7 }\qquad\mathrm{(C)\ 8 }\qquad\mathrm{(D)\ 9 }\qquad\mathrm{(E)\ 10 }$

Problem 9

The average of the five numbers in a list is $54$. The average of the first two numbers is $48$. What is the average of the last three numbers?

$\mathrm{(A)\ 55 }\qquad\mathrm{(B)\ 56 }\qquad\mathrm{(C)\ 57 }\qquad\mathrm{(D)\ 58 }\qquad\mathrm{(E)\ 59 }$

Problem 10

Problem 11

Problem 12

Problem 13

Problem 14

Problem 15

Problem 16

Problem 17

Problem 18

Problem 19

Problem 20

Problem 21

Problem 22

Problem 23

Problem 24

Problem 25