Difference between revisions of "2006 AMC 10B Problems/Problem 5"

m (added category)
(See Also)
Line 12: Line 12:
  
 
== See Also ==
 
== See Also ==
*[[2006 AMC 10B Problems]]
+
{{AMC10 box|year=2006|ab=B|num-b=4|num-a=6}}
 
 
*[[2006 AMC 10B Problems/Problem 4|Previous Problem]]
 
 
 
*[[2006 AMC 10B Problems/Problem 6|Next Problem]]
 
  
 
[[Category:Introductory Geometry Problems]]
 
[[Category:Introductory Geometry Problems]]

Revision as of 21:53, 7 September 2011

Problem

A $2 \times 3$ rectangle and a $3 \times 4$ rectangle are contained within a square without overlapping at any point, and the sides of the square are parallel to the sides of the two given rectangles. What is the smallest possible area of the square?

$\mathrm{(A) \ } 16\qquad \mathrm{(B) \ } 25\qquad \mathrm{(C) \ } 36\qquad \mathrm{(D) \ } 49\qquad \mathrm{(E) \ } 64$

Solution

By placing the $2 \times 3$ rectangle adjacent to the $3 \times 4$ rectangle with the 3 side of the $2 \times 3$ rectangle next to the 4 side of the $3 \times 4$ rectangle, we get a figure that can be completely enclosed in a square with a side length of 5. The area of this square is $5^2 = 25$.

Since the sum of the areas of the two rectangles is $2\cdot3+3\cdot4=18$, the area of a square cannot be less than 18. Therefore 16 is not possible.

So the answer is $25 \Rightarrow B$

See Also

2006 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions