Difference between revisions of "1996 AHSME Problems/Problem 24"

(Created page with "==See also== {{AHSME box|year=1996|num-b=23|num-a=25}}")
 
Line 1: Line 1:
 +
==Problem 24==
 +
 +
The sequence <math> 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2,\ldots </math> consists of <math>1</math>’s separated by blocks of <math>2</math>’s with <math>n</math> <math>2</math>’s in the <math>n^{th}</math> block. The sum of the first <math>1234</math> terms of this sequence is
 +
 +
<math> \text{(A)}\ 1996\qquad\text{(B)}\ 2419\qquad\text{(C)}\ 2429\qquad\text{(D)}\ 2439\qquad\text{(E)}\ 2449 </math>
 +
 
==See also==
 
==See also==
 
{{AHSME box|year=1996|num-b=23|num-a=25}}
 
{{AHSME box|year=1996|num-b=23|num-a=25}}

Revision as of 13:10, 19 August 2011

Problem 24

The sequence $1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2,\ldots$ consists of $1$’s separated by blocks of $2$’s with $n$ $2$’s in the $n^{th}$ block. The sum of the first $1234$ terms of this sequence is

$\text{(A)}\ 1996\qquad\text{(B)}\ 2419\qquad\text{(C)}\ 2429\qquad\text{(D)}\ 2439\qquad\text{(E)}\ 2449$

See also

1996 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions