Difference between revisions of "1996 AHSME Problems/Problem 30"
m (moved 1996 ASHME Problem 30 to 1996 AHSME Problems/Problem 30: maintenance) |
m (fixes) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
A hexagon inscribed in a circle has three consecutive sides each of length 3 and three consecutive sides each of length 5. The chord of the circle that divides the hexagon into two trapezoids, one with three sides each of length 3 and the other with three sides each of length 5, has length equal to <math>m/n</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m + n</math>. | A hexagon inscribed in a circle has three consecutive sides each of length 3 and three consecutive sides each of length 5. The chord of the circle that divides the hexagon into two trapezoids, one with three sides each of length 3 and the other with three sides each of length 5, has length equal to <math>m/n</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m + n</math>. | ||
− | < | + | <cmath>\textbf{(A)}\ 309 \qquad \textbf{(B)}\ 349 \qquad \textbf{(C)}\ 369 \qquad \textbf{(D)}\ 389 \qquad \textbf{(E)}\ 409 </cmath> |
==Solution== | ==Solution== | ||
All angle measures are in degrees. | All angle measures are in degrees. | ||
Let the first trapezoid be <math>ABCD</math>, where <math>AB=BC=CD=3</math>. Then the second trapezoid is <math>AFED</math>, where <math>AF=FE=ED=5</math>. We look for <math>AD</math>. | Let the first trapezoid be <math>ABCD</math>, where <math>AB=BC=CD=3</math>. Then the second trapezoid is <math>AFED</math>, where <math>AF=FE=ED=5</math>. We look for <math>AD</math>. | ||
− | Since <math>ABCD</math> is an isosceles trapezoid, we know that <math>\angle BAD=\angle CDA</math> and, since <math>AB=BC</math>, if we drew <math>AC</math>, we would see <math>\angle BCA=\angle BAC</math>. Anyway, <math>\widehat{AB}=\widehat{BC}=\widehat{CD}</math> ( | + | Since <math>ABCD</math> is an isosceles trapezoid, we know that <math>\angle BAD=\angle CDA</math> and, since <math>AB=BC</math>, if we drew <math>AC</math>, we would see <math>\angle BCA=\angle BAC</math>. Anyway, <math>\widehat{AB}=\widehat{BC}=\widehat{CD}</math> (<math>\widehat{AB}</math> means arc AB). Using similar reasoning, <math>\widehat{AF}=\widehat{FE}=\widehat{ED}</math>. |
Let <math>\widehat{AB}=2\phi</math> and <math>\widehat{AF}=2\theta</math>. Since <math>6\theta+6\phi=360</math> (add up the angles), <math>2\theta+2\phi=120</math> and thus <math>\widehat{AB}+\widehat{AF}=\widehat{BF}=120</math>. Therefore, <math>\angle FAB=\frac{1}{2}\widehat{BDF}=\frac{1}{2}(240)=120</math>. <math>\angle CDE=120</math> as well. | Let <math>\widehat{AB}=2\phi</math> and <math>\widehat{AF}=2\theta</math>. Since <math>6\theta+6\phi=360</math> (add up the angles), <math>2\theta+2\phi=120</math> and thus <math>\widehat{AB}+\widehat{AF}=\widehat{BF}=120</math>. Therefore, <math>\angle FAB=\frac{1}{2}\widehat{BDF}=\frac{1}{2}(240)=120</math>. <math>\angle CDE=120</math> as well. | ||
Line 23: | Line 23: | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
Returning to finding <math>AD</math>, we remember <cmath>\frac{\sin{\theta}}{5}=\frac{\sin{3\phi}}{AD}\;\text{so}\;AD=\frac{5\sin{3\phi}}{\sin{\theta}}.</cmath> | Returning to finding <math>AD</math>, we remember <cmath>\frac{\sin{\theta}}{5}=\frac{\sin{3\phi}}{AD}\;\text{so}\;AD=\frac{5\sin{3\phi}}{\sin{\theta}}.</cmath> | ||
− | Plugging in and solving, we see <math>AD=\frac{360}{49}</math> | + | Plugging in and solving, we see <math>AD=\frac{360}{49}</math>. Thus, the answer is <math>360 + 49 = 409</math>, which is answer choice <math>\boxed{\textbf{(E)}}</math>. |
+ | |||
+ | == See also == | ||
+ | {{AHSME box | year = 1996 | num-b = 29 | after = Last Problem}} | ||
+ | |||
+ | [[Category:Intermediate Geometry Problems]] |
Revision as of 10:10, 5 August 2011
Problem
A hexagon inscribed in a circle has three consecutive sides each of length 3 and three consecutive sides each of length 5. The chord of the circle that divides the hexagon into two trapezoids, one with three sides each of length 3 and the other with three sides each of length 5, has length equal to , where and are relatively prime positive integers. Find .
Solution
All angle measures are in degrees. Let the first trapezoid be , where . Then the second trapezoid is , where . We look for .
Since is an isosceles trapezoid, we know that and, since , if we drew , we would see . Anyway, ( means arc AB). Using similar reasoning, .
Let and . Since (add up the angles), and thus . Therefore, . as well.
Now I focus on triangle . By the Law of Cosines, , so . Seeing and , we can now use the Law of Sines to get:
Now I focus on triangle . and , and we are given that , so We know , but we need to find . Using various identities, we see Returning to finding , we remember Plugging in and solving, we see . Thus, the answer is , which is answer choice .
See also
1996 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 29 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |