Difference between revisions of "1998 AJHSME Problems/Problem 12"

(See also)
Line 39: Line 39:
  
 
== See also ==
 
== See also ==
{{AJHSME box|year=1998|before=[[1997 AJHSME Problems|1997 AJHSME]]|after=[[1999 AMC 8 Problems|1999 AMC 8]]}}
+
{{AJHSME box|year=1998|num-b=11|num-a=13}}
 
* [[AJHSME]]
 
* [[AJHSME]]
 
* [[AJHSME Problems and Solutions]]
 
* [[AJHSME Problems and Solutions]]
 
* [[Mathematics competition resources]]
 
* [[Mathematics competition resources]]

Revision as of 10:22, 31 July 2011

Problem 12

$2\left(1-\dfrac{1}{2}\right) + 3\left(1-\dfrac{1}{3}\right) + 4\left(1-\dfrac{1}{4}\right) + \cdots + 10\left(1-\dfrac{1}{10}\right)=$

$\text{(A)}\ 45 \qquad \text{(B)}\ 49 \qquad \text{(C)}\ 50 \qquad \text{(D)}\ 54 \qquad \text{(E)}\ 55$

Solution

Taking the first product, we have

$(1-\frac{1}{2})=\frac{1}{2}$

$\frac{1}{2}\times2=1$

Looking at the second, we get

$(1-\frac{1}{3})=\frac{2}{3}$

$\frac{2}{3}\times3=2$

We seem to be going up by $1$.

Just to check,

$1-\frac{1}{n}=\frac{n-1}{n}$

$\frac{n-1}{n}\times n=n-1$

Now that we have discovered the pattern, we have to find the last term.

$1-\frac{1}{10}=\frac{9}{10}$

$\frac{9}{10}\times10=9$

The sum of all numbers from $1$ to $9$ is

$\frac{(9)(10)}{2}=45=\boxed{A}$


See also

1998 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions