Difference between revisions of "1998 AJHSME Problems/Problem 3"

m (See also)
(Cleaned up LaTeX)
Line 7: Line 7:
 
==Solution==
 
==Solution==
  
<math>\frac{\frac{3}{8}+\frac{7}{8}}\frac{4}{5}}=\frac{\frac{10}{8}}{\frac{4}{5}=\frac{\frac{5}{4}}{\frac{4}{5}}=\frac{25}{16}</math>
+
<math>\frac{\frac{3}{8}+\frac{7}{8}}{\frac{4}{5}} = \frac{\frac{10}{8}}{\frac{4}{5}} = \frac{\frac{5}{4}}{\frac{4}{5}} = \frac{5}{4}} \cdot \frac{5}{4}} = \frac{25}{16} = \boxed{B}</math>
 
 
<math>\boxed{B}</math>
 
  
 
== See also ==
 
== See also ==

Revision as of 10:02, 31 July 2011

Problem 3

$\dfrac{\dfrac{3}{8} + \dfrac{7}{8}}{\dfrac{4}{5}} =$

$\text{(A)}\ 1 \qquad \text{(B)} \dfrac{25}{16} \qquad \text{(C)}\ 2 \qquad \text{(D)}\ \dfrac{43}{20} \qquad \text{(E)}\ \dfrac{47}{16}$

Solution

$\frac{\frac{3}{8}+\frac{7}{8}}{\frac{4}{5}} = \frac{\frac{10}{8}}{\frac{4}{5}} = \frac{\frac{5}{4}}{\frac{4}{5}} = \frac{5}{4}} \cdot \frac{5}{4}} = \frac{25}{16} = \boxed{B}$ (Error compiling LaTeX. Unknown error_msg)

See also

1998 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions