Difference between revisions of "2002 AMC 12B Problems/Problem 1"

m (s)
 
Line 1: Line 1:
== Problem ==
+
{{duplicate|[[2002 AMC 12B Problems|2002 AMC 12B #1]] and [[2002 AMC 10B Problems|2002 AMC 10B #3]]}}== Problem ==
 
The [[arithmetic mean]] of the nine numbers in the set <math>\{9, 99, 999, 9999, \ldots, 999999999\}</math> is a <math>9</math>-digit number <math>M</math>, all of whose digits are distinct. The number <math>M</math> does not contain the digit
 
The [[arithmetic mean]] of the nine numbers in the set <math>\{9, 99, 999, 9999, \ldots, 999999999\}</math> is a <math>9</math>-digit number <math>M</math>, all of whose digits are distinct. The number <math>M</math> does not contain the digit
  
Line 8: Line 8:
 
\qquad\mathrm{(E)}\ 8</math>
 
\qquad\mathrm{(E)}\ 8</math>
 
== Solution ==
 
== Solution ==
The average of the nine numbers is
+
We wish to find <math>\frac{9+99+\cdots +999999999}{9}</math>, or <math>\frac{9(1+11+111+\cdots +111111111)}{9}=123456789</math>. This does not have the digit 0, so the answer is <math>\boxed{\mathrm{(A)}\ 0}</math>
<cmath>M=\frac{9 + 99 + \cdots + 999999999}{9} = 1 + 11 + \cdots + 111111111 = 123456789</cmath>
 
 
 
which does not have the digit <math>0 \Rightarrow \mathrm{(A)}</math>.
 
  
 
== See also ==
 
== See also ==
 +
{{AMC10 box|year=2002|ab=B|num-b=2|num-a=4}}
 
{{AMC12 box|year=2002|ab=B|before=First question|num-a=2}}
 
{{AMC12 box|year=2002|ab=B|before=First question|num-a=2}}
  
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]

Revision as of 16:19, 28 July 2011

The following problem is from both the 2002 AMC 12B #1 and 2002 AMC 10B #3, so both problems redirect to this page.== Problem ==

The arithmetic mean of the nine numbers in the set $\{9, 99, 999, 9999, \ldots, 999999999\}$ is a $9$-digit number $M$, all of whose digits are distinct. The number $M$ does not contain the digit

$\mathrm{(A)}\ 0 \qquad\mathrm{(B)}\ 2 \qquad\mathrm{(C)}\ 4 \qquad\mathrm{(D)}\ 6 \qquad\mathrm{(E)}\ 8$

Solution

We wish to find $\frac{9+99+\cdots +999999999}{9}$, or $\frac{9(1+11+111+\cdots +111111111)}{9}=123456789$. This does not have the digit 0, so the answer is $\boxed{\mathrm{(A)}\ 0}$

See also

2002 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2002 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
First question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions