Difference between revisions of "1997 USAMO Problems/Problem 4"

m
Line 1: Line 1:
 +
== Problem ==
 +
To ''clip'' a convex <math>n</math>-gon means to choose a pair of consecutive sides <math>AB, BC</math> and to replace them by three segments <math>AM, MN,</math> and <math>NC,</math> where <math>M</math> is the midpoint of <math>AB</math> and <math>N</math> is the midpoint of <math>BC</math>. In other words, one cuts off the triangle <math>MBN</math> to obtain a convex <math>(n+1)</math>-gon. A regular hexagon <math>P_6</math> of area <math>1</math> is clipped to obtain a heptagon <math>P_7</math>. Then <math>P_7</math> is clipped (in one of the seven possible ways) to obtain an octagon <math>P_8</math>, and so on. Prove that no matter how the clippings are done, the area of <math>P_n</math> is greater than <math>\frac{1}{3}</math>, for all <math>n\ge6</math>.
  
 +
== Solution ==

Revision as of 13:10, 5 July 2011

Problem

To clip a convex $n$-gon means to choose a pair of consecutive sides $AB, BC$ and to replace them by three segments $AM, MN,$ and $NC,$ where $M$ is the midpoint of $AB$ and $N$ is the midpoint of $BC$. In other words, one cuts off the triangle $MBN$ to obtain a convex $(n+1)$-gon. A regular hexagon $P_6$ of area $1$ is clipped to obtain a heptagon $P_7$. Then $P_7$ is clipped (in one of the seven possible ways) to obtain an octagon $P_8$, and so on. Prove that no matter how the clippings are done, the area of $P_n$ is greater than $\frac{1}{3}$, for all $n\ge6$.

Solution