Difference between revisions of "2011 AMC 12B Problems/Problem 13"
(Created page with "==Problem== Brian writes down four integers <math>w > x > y > z</math> whose sum is <math>44</math>. The pairwise positive differences of these numbers are <math>1, 3, 4, 5, 6</m...") |
|||
Line 5: | Line 5: | ||
== Solution == | == Solution == | ||
− | { | + | Assume that <math>y-z=a, x-y=b, w-x=c.</math> |
+ | <math>w-z</math> results in the greatest pairwise difference, and thus it is <math>9</math>. | ||
+ | which means <math>a+b+c=9</math>. <math>a,b,c</math> must be in the set <math>{1,3,4,5,6}</math>. | ||
+ | The only way for 3 numbers in the set to add up to 9 is if they are <math>1,3,5</math>. | ||
+ | <math>a+b</math>, and <math>b+c</math> then must be the remaining two numbers which are <math>4</math> and <math>6</math>. | ||
+ | the ordering of <math>(a,b,c)</math> must be either <math>(3,1,5)</math> or <math>(5,1,3)</math>. | ||
+ | Case 1 | ||
+ | <math>(a,b,c)=(3,1,5)</math> | ||
+ | <math>x=w-5</math> | ||
+ | <math>y=w-5-1</math> | ||
+ | <math>x=w-5-1-3</math> | ||
+ | <math>w+x+y+z=4w-20=44</math> | ||
+ | <math>w=16</math> | ||
+ | |||
+ | Case 2 | ||
+ | <math>(a,b,c)=(5,1,3)</math> | ||
+ | <math>x=w-3</math> | ||
+ | <math>y=w-3-1</math> | ||
+ | <math>x=w-3-1-5</math> | ||
+ | <math>w+x+y+z=4w-16=44</math> | ||
+ | <math>w=15</math> | ||
+ | |||
+ | The sum of the two w's is <math>15+16=31</math> <math>\boxed{B}</math> | ||
== See also == | == See also == | ||
{{AMC12 box|year=2011|ab=B|num-b=12|num-a=14}} | {{AMC12 box|year=2011|ab=B|num-b=12|num-a=14}} |
Revision as of 21:29, 26 June 2011
Problem
Brian writes down four integers whose sum is . The pairwise positive differences of these numbers are and . What is the sum of the possible values of ?
Solution
Assume that results in the greatest pairwise difference, and thus it is . which means . must be in the set . The only way for 3 numbers in the set to add up to 9 is if they are . , and then must be the remaining two numbers which are and . the ordering of must be either or .
Case 1
Case 2
The sum of the two w's is
See also
2011 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 12 |
Followed by Problem 14 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |