Difference between revisions of "2002 AMC 10B Problems/Problem 22"
m |
|||
Line 1: | Line 1: | ||
− | == Problem | + | == Problem== |
Let <math>\triangle{XOY}</math> be a right-triangle with <math>m\angle{XOY}=90^\circ</math>. Let <math>M</math> and <math>N</math> be the midpoints of the legs <math>OX</math> and <math>OY</math>, respectively. Given <math>XN=19</math> and <math>YM=22</math>, find <math>XY</math>. | Let <math>\triangle{XOY}</math> be a right-triangle with <math>m\angle{XOY}=90^\circ</math>. Let <math>M</math> and <math>N</math> be the midpoints of the legs <math>OX</math> and <math>OY</math>, respectively. Given <math>XN=19</math> and <math>YM=22</math>, find <math>XY</math>. | ||
Line 13: | Line 13: | ||
\sqrt{4x^2+4y^2}&=\boxed{\mathrm{(B) \ } 26} | \sqrt{4x^2+4y^2}&=\boxed{\mathrm{(B) \ } 26} | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
+ | |||
+ | ==See Also== | ||
+ | |||
+ | {{AMC10 box|year=2002|ab=B|num-b=21|num-a=23}} |
Revision as of 01:42, 5 June 2011
Problem
Let be a right-triangle with . Let and be the midpoints of the legs and , respectively. Given and , find .
Solution
Let and . By the Pythagorean Theorem, and We wish to find . So, we add the two equations, multiply by , and take the square root.
See Also
2002 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |