Difference between revisions of "2011 AMC 10B Problems/Problem 18"
(→Solution) |
|||
Line 1: | Line 1: | ||
− | ==Problem== | + | == Problem 18 == |
− | + | Rectangle <math>ABCD</math> has <math>AB = 6</math> and <math>BC = 3</math>. Point <math>M</math> is chosen on side <math>AB</math> so that <math>\angle AMD = \angle CMD</math>. What is the degree measure of <math>\angle AMD</math>? | |
− | (A) 15 (B) 30 (C) 45 (D) 60 (E) 75 | + | <math> \textbf{(A)}\ 15 \qquad\textbf{(B)}\ 30 \qquad\textbf{(C)}\ 45 \qquad\textbf{(D)}\ 60 \qquad\textbf{(E)}\ 75</math> |
==Solution== | ==Solution== | ||
− | + | <center><asy> | |
+ | unitsize(10mm); | ||
+ | defaultpen(linewidth(.5pt)+fontsize(10pt)); | ||
+ | dotfactor=3; | ||
+ | |||
+ | pair A=(0,3), B=(6,3), C=(6,0), D=(0,0); | ||
+ | pair M=(0.80385,3); | ||
+ | |||
+ | draw(A--B--C--D--cycle); | ||
+ | draw(M--C); | ||
+ | draw(M--D); | ||
+ | draw(anglemark(A,M,D)); | ||
+ | draw(anglemark(D,M,C)); | ||
+ | draw(anglemark(C,D,M)); | ||
+ | |||
+ | pair[] ps={A,B,C,D,M}; | ||
+ | dot(ps); | ||
+ | label("$A$",A,NW); | ||
+ | label("$B$",B,NE); | ||
+ | label("$C$",C,SE); | ||
+ | label("$D$",D,SW); | ||
+ | label("$M$",M,N); | ||
+ | label("$6$",midpoint(C--M),SW); | ||
+ | label("$6$",midpoint(A--B),N); | ||
+ | label("$3$",midpoint(B--C),E); | ||
+ | |||
+ | </asy> | ||
+ | </center> | ||
+ | |||
+ | It is given that <math>\angle AMD \cong \angle CMD</math>. Since <math>\angle AMD</math> and <math>\angle CDM</math> are [[alternate interior angles]] and <math>\overline{AB} \parallel \overline{DC}</math>, <math>\angle AMD \cong \angle CDM \longrightarrow \angle CMD \cong \angle CDM</math>. Use the [[Base Angle Theorem]] to show <math>\overline{DC} \cong \overline{MC}</math>. We know that <math>ABCD</math> is a [[rectangle]], so it follows that <math>\overline{MC} = 6</math>. We notice that <math>\triangle BMC</math> is a <math>30-60-90</math> triangle, and <math>\angle BMC = 30^{\circ}</math>. If we let <math>x</math> be the measure of <math>\angle AMD,</math> then | ||
+ | <cmath>\begin{align*} | ||
+ | 2x + 30 &= 180\\ | ||
+ | 2x &= 150\\ | ||
+ | x &= \boxed{\textbf{(E)} 75} | ||
+ | \end{align*}</cmath> |
Revision as of 23:15, 25 May 2011
Problem 18
Rectangle has and . Point is chosen on side so that . What is the degree measure of ?
Solution
It is given that . Since and are alternate interior angles and , . Use the Base Angle Theorem to show . We know that is a rectangle, so it follows that . We notice that is a triangle, and . If we let be the measure of then