Difference between revisions of "2011 AMC 10B Problems/Problem 1"
Line 1: | Line 1: | ||
+ | == Problem 1 == | ||
+ | |||
+ | What is <cmath>\dfrac{2+4+6}{1+3+5} - \dfrac{1+3+5}{2+4+6} ?</cmath> | ||
+ | |||
+ | <math> \textbf{(A)}\ -1\qquad\textbf{(B)}\ \frac{5}{36}\qquad\textbf{(C)}\ \frac{7}{12}\qquad\textbf{(D)}\ \frac{147}{60}\qquad\textbf{(E)}\ \frac{43}{3} </math> | ||
+ | |||
+ | == Solution == | ||
+ | |||
First, simplify the fractions. | First, simplify the fractions. | ||
<math>\dfrac{2+4+6}{1+3+5} - \dfrac{1+3+5}{2+4+6} = \dfrac{12}{9} - \dfrac{9}{12}</math> | <math>\dfrac{2+4+6}{1+3+5} - \dfrac{1+3+5}{2+4+6} = \dfrac{12}{9} - \dfrac{9}{12}</math> | ||
− | <math>\dfrac{12}{9} - \dfrac{9}{12} = \dfrac{48}{36} - \dfrac{27}{36} = \dfrac{21}{36} = \dfrac{7}{12} | + | <math>\dfrac{12}{9} - \dfrac{9}{12} = \dfrac{48}{36} - \dfrac{27}{36} = \dfrac{21}{36} = \boxed{\dfrac{7}{12} \textbf{(C)}}</math> |
− | |||
− |
Revision as of 17:53, 25 May 2011
Problem 1
What is
Solution
First, simplify the fractions.