Difference between revisions of "2011 AIME II Problems/Problem 2"
Line 1: | Line 1: | ||
− | Problem | + | == Problem 2 == |
− | |||
On square ABCD, point E lies on side AD and point F lies on side BC, so that BE=EF=FD=30. Find the area of the square ABCD. | On square ABCD, point E lies on side AD and point F lies on side BC, so that BE=EF=FD=30. Find the area of the square ABCD. | ||
− | ---- | + | == Solution == |
− | + | Drawing the square and examining the given lengths, | |
− | + | <asy> | |
− | + | size(2inch, 2inch); | |
− | Therefore, (x being the side length), <math>sqrt | + | currentpen = fontsize(8pt); |
− | + | pair A = (0, 0); dot(A); label("$A$", A, plain.SW); | |
− | + | pair B = (3, 0); dot(B); label("$B$", B, plain.SE); | |
+ | pair C = (3, 3); dot(C); label("$C$", C, plain.NE); | ||
+ | pair D = (0, 3); dot(D); label("$D$", D, plain.NW); | ||
+ | pair E = (0, 1); dot(E); label("$E$", E, plain.W); | ||
+ | pair F = (3, 2); dot(F); label("$F$", F, plain.E); | ||
+ | label("$\frac x3$", E--A); | ||
+ | label("$\frac x3$", F--C); | ||
+ | label("$x$", A--B); | ||
+ | label("$x$", C--D); | ||
+ | label("$\frac {2x}3$", B--F); | ||
+ | label("$\frac {2x}3$", D--E); | ||
+ | label("$30$", B--E); | ||
+ | label("$30$", F--E); | ||
+ | label("$30$", F--D); | ||
+ | draw(B--C--D--F--E--B--A--D); | ||
+ | </asy> | ||
+ | you find that the three segments cut the square into three equal horizontal sections. Therefore, (<math>x</math> being the side length), <math>\sqrt{x^2+(x/3)^2}=30</math>, or <math>x^2+(x/3)^2=900</math>. Solving for <math>x</math>, we get <math>x=9\sqrt{10}</math>, and <math>x^2=810.</math> | ||
− | < | + | Area of the square is <math>\fbox{810.}</math> |
Revision as of 00:05, 3 April 2011
Problem 2
On square ABCD, point E lies on side AD and point F lies on side BC, so that BE=EF=FD=30. Find the area of the square ABCD.
Solution
Drawing the square and examining the given lengths, you find that the three segments cut the square into three equal horizontal sections. Therefore, ( being the side length), , or . Solving for , we get , and
Area of the square is