Difference between revisions of "2011 AIME II Problems/Problem 8"

Line 1: Line 1:
 
Problem:
 
Problem:
  
Let <math>z_{1}, z_{2}, ... , z_{12}</math> be the 12 zeros of the polynomial <math>z^{12}-2^{36}</math>. For each j, let <math>w_{j }</math>be one of <math>z_{j}</math> or ''i''<math>z_{j}</math>. Then the maximum possible value of the real part of (somebody who knows how please create in an equation) SUM j=1 to 12 (<math>w_{j}</math>) can be written as m+root(n), where m and n are positive integers. Find m+n.
+
Let <math>z_1</math>, <math>z_2</math>, <math>z_3</math>, <math>\dots</math>, <math>z_{12}</math> be the 12 zeroes of the polynomial <math>z^{12} - 2^{36}</math>. For each <math>j</math>, let <math>w_j</math> be one of <math>z_j</math> or <math>iz_j</math>. Then the maximum possible value of the real part of <math>\sum_{j = 1}^{12} w_j</math> can be written as <math>m + \sqrt{n}</math>, where <math>m</math> and <math>n</math> are positive integers. Find <math>m + n</math>.
  
 
----
 
----
 
Solution:
 
Solution:

Revision as of 17:15, 31 March 2011

Problem:

Let $z_1$, $z_2$, $z_3$, $\dots$, $z_{12}$ be the 12 zeroes of the polynomial $z^{12} - 2^{36}$. For each $j$, let $w_j$ be one of $z_j$ or $iz_j$. Then the maximum possible value of the real part of $\sum_{j = 1}^{12} w_j$ can be written as $m + \sqrt{n}$, where $m$ and $n$ are positive integers. Find $m + n$.


Solution: