Difference between revisions of "2011 AIME I Problems/Problem 6"
m (Fixing the AIME box by adding a variable.) |
(→See also) |
||
Line 7: | Line 7: | ||
== See also == | == See also == | ||
− | {{AIME box|year=2011|n=I| | + | {{AIME box|year=2011|n=I|num-b=5|num-a=7}} |
* [[AIME Problems and Solutions]] | * [[AIME Problems and Solutions]] | ||
* [[American Invitational Mathematics Examination]] | * [[American Invitational Mathematics Examination]] | ||
* [[Mathematics competition resources]] | * [[Mathematics competition resources]] |
Revision as of 03:37, 29 March 2011
Problem
Suppose that a parabola has vertex and equation , where and is an integer. The minimum possible value of can be written in the form , where and are relatively prime positive integers. Find .
Solution
If the vertex is at , the equation of the parabola can be expressed in the form . Expanding, we find that , and . From the problem, we know that the parabola can be expressed in the form , where is an integer. From the above equation, we can conclude that , , and . Adding up all of these gives us . We know that is an integer, so 9a-18 must be divisible by 16. Let . If , then . Therefore, if , . Adding up gives us
See also
2011 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |