Difference between revisions of "2011 AIME I Problems/Problem 15"
m (→Solution) |
m (→Solution) |
||
Line 40: | Line 40: | ||
<table border = 1 cellspacing = 0 cellpadding = 5 style = "text-align:center;"> | <table border = 1 cellspacing = 0 cellpadding = 5 style = "text-align:center;"> | ||
− | <tr><th><math>a</math></th><th><math>a^2 = 2011 + bc</math></th></tr> | + | <tr><th><math>|a|</math></th><th><math>a^2 = 2011 + bc</math></th></tr> |
<tr><td><math>45</math></td><td><math>14</math></td></tr> | <tr><td><math>45</math></td><td><math>14</math></td></tr> | ||
Line 59: | Line 59: | ||
− | Hence, <math>a = 49</math>, <math>a^2 -2011 = 390</math>. <math>b = 39</math>, <math>c = 10</math>. | + | Hence, <math>|a| = 49</math>, <math>a^2 -2011 = 390</math>. <math>b = 39</math>, <math>c = 10</math>. |
Answer: <math>098</math> | Answer: <math>098</math> |
Revision as of 22:11, 19 March 2011
Problem
For some integer , the polynomial has the three integer roots , , and . Find .
Solution
With Vieta's formula, we know that , and .
since any one being zero will make the the other 2 .
. WLOG, let .
Then if , then and if , .
We know that , have the same sign. So . ( and )
Also, maximize when if we fixed . Hence, .
So .
so .
Now we have limited a to .
Let's us analyze .
Here is a table:
We can tell we don't need to bother with ,
, So won't work. ,
is not divisible by , , which is too small to get
, is not divisible by or or , we can clearly tell that is too much
Hence, , . , .
Answer:
See also
2011 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |