Difference between revisions of "L'Hpital's Rule"
Ahaanomegas (talk | contribs) |
Ahaanomegas (talk | contribs) |
||
Line 1: | Line 1: | ||
− | + | ==Discovered By== | |
Guillaume de l'Hopital | Guillaume de l'Hopital | ||
− | + | ==The Rule== | |
For <math> \frac {0}{0} </math> or <math> \frac {\infty}{\infty} </math> case, the limit <cmath> \lim_{x \to a} \cfrac {f(x)}{g(x)} = \lim_{x \to a} \cfrac {f'(x)}{g'(x)} </cmath> where <math> f'(x) </math> and <math> g'(x) </math> are the first derivatives of <math> f(x) </math> and <math> g(x) </math>, respectively. | For <math> \frac {0}{0} </math> or <math> \frac {\infty}{\infty} </math> case, the limit <cmath> \lim_{x \to a} \cfrac {f(x)}{g(x)} = \lim_{x \to a} \cfrac {f'(x)}{g'(x)} </cmath> where <math> f'(x) </math> and <math> g'(x) </math> are the first derivatives of <math> f(x) </math> and <math> g(x) </math>, respectively. | ||
− | + | ==Examples== | |
<math> \lim_{x \to 4} \cfrac {x^3 - 64}{4 - x} = \lim_{x \to 4} \cfrac {3x^2}{-1} = -3(4)^2 = -3(16) = \boxed {-48} </math> | <math> \lim_{x \to 4} \cfrac {x^3 - 64}{4 - x} = \lim_{x \to 4} \cfrac {3x^2}{-1} = -3(4)^2 = -3(16) = \boxed {-48} </math> | ||
<math> \lim_{x \to 0} \cfrac {\sin x}{x} = \lim_{x \to 0} \cfrac {\cos x}{1} = \cos (0) = \boxed {1} </math> | <math> \lim_{x \to 0} \cfrac {\sin x}{x} = \lim_{x \to 0} \cfrac {\cos x}{1} = \cos (0) = \boxed {1} </math> | ||
+ | |||
+ | ==Extra Help Needed?== | ||
+ | |||
+ | Send a message here: [http://www.artofproblemsolving.com/Forum/ucp.php?i=pm&mode=compose&u=80321 |
Revision as of 20:54, 15 March 2011
Discovered By
Guillaume de l'Hopital
The Rule
For or case, the limit where and are the first derivatives of and , respectively.
Examples
Extra Help Needed?
Send a message here: [http://www.artofproblemsolving.com/Forum/ucp.php?i=pm&mode=compose&u=80321