GET READY FOR THE AMC 12 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 12 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2011 AMC 12B Problems"

(Problem 5)
(Problem 6)
Line 36: Line 36:
  
 
==Problem 6==
 
==Problem 6==
 +
Two tangents to a circle are drawn from a point <math>A</math>.  The points of contact <math>B</math> and <math>C</math> divide the circle into arcs with lengths in the ratio <math>2 : 3</math>.  What is the degree measure of <math>\angle{BAC}</math>?
 +
 +
<math>\textbf{(A)}\ 24 \qquad \textbf{(B)}\ 30 \qquad \textbf{(C)}\ 36 \qquad \textbf{(D)}\ 48 \qquad \textbf{(E)}\ 60</math>
 +
 +
[[2011 AMC 12B Problems/Problem 6|Solution]]
  
 
==Problem 7==
 
==Problem 7==

Revision as of 12:46, 26 February 2011

Problem 1

What is

$\frac{2+4+6}{1+3+5}-\frac{1+3+5}{2+4+6}?$


$\textbf{(A)}\ -1 \qquad \textbf{(B)}\ \frac{5}{36} \qquad \textbf{(C)}\ \frac{7}{12} \qquad \textbf{(D)}\ \frac{147}{60} \qquad \textbf{(E)}\ \frac{43}{3}$

Solution

Problem 2

Josanna's test scores to date are $90$, $80$, $70$, $60$, and $85$. Her goal is to raise her test average at least $3$ points with her next test. What is the minimum test score she would need to accomplish this goal?

$\textbf{(A)}\ 80 \qquad \textbf{(B)}\ 82 \qquad \textbf{(C)}\ 85 \qquad \textbf{(D)}\ 90 \qquad \textbf{(E)}\ 95$

Solution

Problem 3

LeRoy and Bernardo went on a week-long trip together and agreed to share the costs equally. Over the week, each of them paid for various joint expenses such as gasoline and car rental. At the end of the trip it turned out that LeRoy had paid $A$ dollars and Bernardo had paid $B$ dollars, where $A<B$. How many dollars must LeRoy give to Bernardo so that they share the costs equally?

$\textbf{(A)}\ \frac{A+B}{2} \qquad \textbf{(B)}\ \frac{A-B}{2} \qquad \textbf{(C)}\ \frac{B-A}{2} \qquad \textbf{(D)}\ B-A \qquad \textbf{(E)}\ A+B$

Solution

Problem 4

In multiplying two positive integers $a$ and $b$, Ron reversed the digits of the two-digit number $a$. His erroneous product was 161. What is the correct value of the product of $a$ and $b$?

$\textbf{(A)}\ 116 \qquad \textbf{(B)}\ 161 \qquad \textbf{(C)}\ 204 \qquad \textbf{(D)}\ 214 \qquad \textbf{(E)}\ 224$

Solution

Problem 5

Let $N$ be the second smallest positive integer that is divisible by every positive integer less than $7$. What is the sum of the digits of $N$?

$\textbf{(A)}\ 3 \qquad \textbf{(B)}\ 4 \qquad \textbf{(C)}\ 5 \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ 9$

Solution

Problem 6

Two tangents to a circle are drawn from a point $A$. The points of contact $B$ and $C$ divide the circle into arcs with lengths in the ratio $2 : 3$. What is the degree measure of $\angle{BAC}$?

$\textbf{(A)}\ 24 \qquad \textbf{(B)}\ 30 \qquad \textbf{(C)}\ 36 \qquad \textbf{(D)}\ 48 \qquad \textbf{(E)}\ 60$

Solution

Problem 7

Problem 8

Problem 9

Problem 10

Problem 11

Problem 12

Problem 13

Problem 14

Problem 15

Problem 16

Problem 17

Problem 18

Problem 19

Problem 20

Problem 21

Problem 22

Problem 23

Problem 24

Problem 25