Difference between revisions of "2006 AIME II Problems/Problem 1"

m (Solution: argh)
(Solution)
Line 20: Line 20:
 
<math>x=46</math></div>
 
<math>x=46</math></div>
  
Therefore, <math>AB</math> is <math>046</math>.
+
Therefore, <math>AB</math> is <math>\boxed{046}</math>.
  
 
== See also ==
 
== See also ==

Revision as of 12:47, 19 September 2010

Problem

In convex hexagon $ABCDEF$, all six sides are congruent, $\angle A$ and $\angle D$ are right angles, and $\angle B, \angle C, \angle E,$ and $\angle F$ are congruent. The area of the hexagonal region is $2116(\sqrt{2}+1).$ Find $AB$.

Solution

Let the side length be called $x$, so $x=AB=BC=CD=DE=EF=AF$.

2006 II AIME-1.png

The diagonal $BF=\sqrt{AB^2+AF^2}=\sqrt{x^2+x^2}=x\sqrt{2}$. Then the areas of the triangles AFB and CDE in total are $\frac{x^2}{2}\cdot 2$, and the area of the rectangle BCEF equals $x\cdot x\sqrt{2}=x^2\sqrt{2}$

Then we have to solve the equation

$2116(\sqrt{2}+1)=x^2\sqrt{2}+x^2$.

$2116(\sqrt{2}+1)=x^2(\sqrt{2}+1)$

$2116=x^2$

$x=46$

Therefore, $AB$ is $\boxed{046}$.

See also

2006 AIME II (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions