Difference between revisions of "2002 AMC 12A Problems/Problem 23"

m
(Corrected Choices)
Line 3: Line 3:
 
In triangle <math>ABC</math> , side <math>AC</math> and the perpendicular bisector of <math>BC</math> meet in point <math>D</math>, and  bisects <math><ABC</math>. If <math>AD=9</math> and <math>DC=7</math>, what is the area of triangle ABD?  
 
In triangle <math>ABC</math> , side <math>AC</math> and the perpendicular bisector of <math>BC</math> meet in point <math>D</math>, and  bisects <math><ABC</math>. If <math>AD=9</math> and <math>DC=7</math>, what is the area of triangle ABD?  
  
<math>
+
<math>\text{(A)}\ 14 \qquad \text{(B)}\ 21 \qquad \text{(C)}\ 28 \qquad \text{(D)}\ 14\sqrt5 \qquad \text{(E)}\ 28\sqrt5</math>
\text{(A) }1992
 
\qquad
 
\text{(B) }1999
 
\qquad
 
\text{(C) }2001
 
\qquad
 
\text{(D) }2002
 
\qquad
 
\text{(E) }2004
 
</math>
 
  
 
==Solution==
 
==Solution==

Revision as of 01:16, 27 June 2010

Problem

In triangle $ABC$ , side $AC$ and the perpendicular bisector of $BC$ meet in point $D$, and bisects $<ABC$. If $AD=9$ and $DC=7$, what is the area of triangle ABD?

$\text{(A)}\ 14 \qquad \text{(B)}\ 21 \qquad \text{(C)}\ 28 \qquad \text{(D)}\ 14\sqrt5 \qquad \text{(E)}\ 28\sqrt5$

Solution

This problem needs a picture. You can help by adding it.

Looking at the triangle BCD, we see that its perpendicular bisector reaches the vertex, therefore hinting it is isoceles. Let angle C be x. B=2x from given and the previous deducted. <ABD=x, <ADB=2x (outer angle). That means ABD and ACB are similar.

$\frac {16}{AB}=\frac {AB}{9}$ $AB=12$

Then by using Heron's Formula on ABD (12,7,9 as sides), we have $\sqrt{14(2)(7)(5)}$ $14\sqrt5=E$

See Also

2002 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last
Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions