Difference between revisions of "2010 USAJMO Problems"
(Created page with '=Day 1= ==Problem 1== A permutation of the set of positive integers <math>[n] = {1,2,\ldots,n}</math> is a sequence <math>(a_1,a_2,\ldots,a_n)</math> such that each element of <m…') |
(→Problem 6) |
||
Line 55: | Line 55: | ||
==Problem 6== | ==Problem 6== | ||
− | Let <math>ABC</math> be a triangle with <math>\angle A = 90^{\ | + | Let <math>ABC</math> be a triangle with <math>\angle A = 90^{\circ}</math>. Points <math>D</math> |
and <math>E</math> lie on sides <math>AC</math> and <math>AB</math>, respectively, such that <math>\angle | and <math>E</math> lie on sides <math>AC</math> and <math>AB</math>, respectively, such that <math>\angle | ||
ABD = \angle DBC</math> and <math>\angle ACE = \angle ECB</math>. Segments <math>BD</math> and | ABD = \angle DBC</math> and <math>\angle ACE = \angle ECB</math>. Segments <math>BD</math> and |
Revision as of 00:24, 7 May 2010
Contents
Day 1
Problem 1
A permutation of the set of positive integers is a sequence such that each element of appears precisely one time as a term of the sequence. For example, is a permutation of . Let be the number of permutations of for which is a perfect square for all . Find with proof the smallest such that is a multiple of .
Problem 2
Let be an integer. Find, with proof, all sequences of positive integers with the following three properties:
- (a). ;
- (b). for all ;
- (c). given any two indices and (not necessarily distinct) for which , there is an index such that .
Problem 3
Let be a convex pentagon inscribed in a semicircle of diameter . Denote by the feet of the perpendiculars from onto lines , respectively. Prove that the acute angle formed by lines and is half the size of , where is the midpoint of segment .
Day 2
Problem 4
A triangle is called a parabolic triangle if its vertices lie on a parabola . Prove that for every nonnegative integer , there is an odd number and a parabolic triangle with vertices at three distinct points with integer coordinates with area .
Problem 5
Two permutations and of the numbers are said to intersect if for some value of in the range . Show that there exist permutations of the numbers such that any other such permutation is guaranteed to intersect at least one of these permutations.
Problem 6
Let be a triangle with . Points and lie on sides and , respectively, such that and . Segments and meet at . Determine whether or not it is possible for segments to all have integer lengths.