Difference between revisions of "2010 AMC 10B Problems/Problem 25"

Line 1: Line 1:
 +
== Problem ==
 +
Let <math>a > 0</math>, and let <math>P(x)</math> be a polynomial with integer coefficients such that
 +
 +
<center>
 +
<math>P(1) = P(3) = P(5) = P(7) = a</math>, and<br/>
 +
<math>P(2) = P(4) = P(6) = P(8) = -a</math>.
 +
</center>
 +
 +
What is the smallest possible value of <math>a</math>?
 +
 +
<math>\textbf{(A)}\ 105 \qquad \textbf{(B)}\ 315 \qquad \textbf{(C)}\ 945 \qquad \textbf{(D)}\ 7! \qquad \textbf{(E)}\ 8!</math>
 +
 +
== Solution ==
 
There must be some polynomial <math>Q(x)</math> such that <math>P(x)-a=(x-1)(x-3)(x-5)(x-7)Q(x)</math>
 
There must be some polynomial <math>Q(x)</math> such that <math>P(x)-a=(x-1)(x-3)(x-5)(x-7)Q(x)</math>
  
Line 11: Line 24:
 
Thus, the least value of <math>a</math> must be the <math>lcm(15,9,15,105)</math>.
 
Thus, the least value of <math>a</math> must be the <math>lcm(15,9,15,105)</math>.
 
Solving, we receive <math>315</math>, so our answer is <math> \boxed{\textbf{(B)}\ 315} </math>.
 
Solving, we receive <math>315</math>, so our answer is <math> \boxed{\textbf{(B)}\ 315} </math>.
 +
 +
== See also ==
 +
{{AMC10 box|year=2010|ab=B|num-b=24|after=Last question}}
 +
 +
[[Category:Intermediate Algebra Problems]]

Revision as of 22:23, 21 April 2010

Problem

Let $a > 0$, and let $P(x)$ be a polynomial with integer coefficients such that

$P(1) = P(3) = P(5) = P(7) = a$, and
$P(2) = P(4) = P(6) = P(8) = -a$.

What is the smallest possible value of $a$?

$\textbf{(A)}\ 105 \qquad \textbf{(B)}\ 315 \qquad \textbf{(C)}\ 945 \qquad \textbf{(D)}\ 7! \qquad \textbf{(E)}\ 8!$

Solution

There must be some polynomial $Q(x)$ such that $P(x)-a=(x-1)(x-3)(x-5)(x-7)Q(x)$

Then, plugging in values of $2,4,6,8,$ we get

$P(2)-a=(2-1)(2-3)(2-5)(2-7)Q(2) = -15Q(2) = -2a$ $P(4)-a=(4-1)(4-3)(4-5)(4-7)Q(4) = -15Q(4) = -2a$ $P(6)-a=(6-1)(6-3)(6-5)(6-7)Q(6) = -15Q(6) = -2a$ $P(8)-a=(8-1)(8-3)(8-5)(8-7)Q(8) = -15Q(8) = -2a$

$-2a=-15Q(2)=9Q(4)=-15Q(6)=105Q(8).$ Thus, the least value of $a$ must be the $lcm(15,9,15,105)$. Solving, we receive $315$, so our answer is $\boxed{\textbf{(B)}\ 315}$.

See also

2010 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions