Difference between revisions of "1984 USAMO Problems/Problem 1"

Line 1: Line 1:
1984 USAMO Problem #1
+
==Problem==
 
 
Problem:
 
  
 
In the polynomial <math>x^4 - 18x^3 + kx^2 + 200x - 1984 = 0</math>, the product of <math>2</math> of its roots is <math>- 32</math>. Find <math>k</math>.
 
In the polynomial <math>x^4 - 18x^3 + kx^2 + 200x - 1984 = 0</math>, the product of <math>2</math> of its roots is <math>- 32</math>. Find <math>k</math>.
  
Solution:
+
==Solution==
  
 
Let the four roots be <math>a,b,c,d</math>. By Vieta's Formulas, we have the following:
 
Let the four roots be <math>a,b,c,d</math>. By Vieta's Formulas, we have the following:
Line 32: Line 30:
 
*<math>(a + b)(c + d) = 4(14) = 56 = k - 30</math>
 
*<math>(a + b)(c + d) = 4(14) = 56 = k - 30</math>
 
*<math>k = \boxed{86}</math>
 
*<math>k = \boxed{86}</math>
 +
 +
==See Also==
 +
 +
{{USAMO box|year=1984|before=First<br>Problem|num-a=2}}
 +
[[Category:Intermediate Algebra Problems]]

Revision as of 19:55, 16 April 2010

Problem

In the polynomial $x^4 - 18x^3 + kx^2 + 200x - 1984 = 0$, the product of $2$ of its roots is $- 32$. Find $k$.

Solution

Let the four roots be $a,b,c,d$. By Vieta's Formulas, we have the following:

  • $ab = - 32$
  • $abcd = - 1984$
  • $cd = 62$
  • $a + b + c + d = 18$*
  • $ab + ac + ad + bc + bd + cd = k$
  • $abc + abd + acd + bcd = - 200$

Substituting given values obtains the following:

  • $ac + ad + bc + bd = k - 62 + 32 = k - 30$
  • $(a + b)(c + d) = k - 30$
  • $- 32c + 62b + 62a - 32d = - 200$
  • $31(a + b) - 16(c + d) = - 100$

Multiplying the * equation by 16 gives

$16(a + b) + 16(c + d) = 288$. Adding it to the previous equation gives

  • $47(a + b) = 188$
  • $a + b = 4$
  • $c + d = 18 - 4 = 14$
  • $(a + b)(c + d) = 4(14) = 56 = k - 30$
  • $k = \boxed{86}$

See Also

1984 USAMO (ProblemsResources)
Preceded by
First
Problem
Followed by
Problem 2
1 2 3 4 5
All USAMO Problems and Solutions